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The transcription factors that regulate endothelial cell development have been a focus of active research for
several years, and many players in the endothelial transcriptional program have been identified. This review
discusses the function of several major regulators of endothelial transcription, including members of the Sox,
Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at
unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial
cell specification and differentiation during vasculogenesis and angiogenesis.
The vascular system is essential for embryonic development and

adult life, and aberrant vascularization is associated with

numerous diseases, including cancer, atherosclerosis, retinop-

athy, and stroke. Vasculogenesis, the de novo formation of

endothelial cells from mesodermal precursors, occurs prior to

the onset of blood circulation and results in the formation of

the extra-embryonic yolk sac vasculature, the paired aortas,

endocardium, and primary vascular plexus of the embryo

(Flamme et al., 1997; Patan, 2004). In mammals, vascular

progenitors first appear in the yolk sac, where mesodermal

precursors of both hematopoietic and endothelial lineages differ-

entiate into solid clumps known as blood islands (Flamme et al.,

1997; Patan, 2004). The outer cells of these blood islands

become flattened and differentiate into endothelial cells, while

the inner cells become hematopoietic cells (Figure 1). Subse-

quent fusion of blood islands results in the formation of a vascular

plexus (Flamme et al., 1997; Patan, 2004; Figure 1). Within the

embryo, endothelial precursor cells, or angioblasts, aggregate

to form the ventral and dorsal aortas and the vitelline arteries

and veins. At the same time, proendocardial cells migrate and

line up along the intestinal portal to form a single endocardial

tube (Flamme et al., 1997).

Following the initial formation of the primitive embryonic and

extra embryonic vasculature through the process of vasculogen-

esis, these vascular systems are rapidly expanded and remod-

eled (Figure 1). This process, referred to as angiogenesis,

involves endothelial cell sprouting, vessel branching, and intus-

susception from existing blood vessels (Flamme et al., 1997;

Patan, 2004). In addition, the blood vasculature becomes further

specialized into arteries, veins and capillaries. Arteries consist of

a layer of endothelial cells surrounded by multiple layers of

smooth muscle cells. These surrounding layers provide vessels

with a degree of contractility and strong structural support due

to the presence of elastic fibers in the smooth muscle walls of

the vessels. By contrast, veins contain a thinner smooth muscle

layer with fewer elastic fibers (Rossant and Hirashima, 2003).

Capillaries and postcapillary venules are associated adluminally

with pericytes, which are mesodermally derived cells that also

provide a degree of contractility and help regulate permeability

in the microvasculature (Hirschi and D’Amore, 1996). Although
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it was long hypothesized that specification of arteries and veins

was controlled by mechanical stimuli, such as sheer stress and

flow, the discovery of the differential expression of the genes en-

coding ephrin-B2 and its receptor EphB4 in arteries and veins,

respectively, prior to the establishment of embryonic circulation

strongly suggests that arterial and venous fates are at least partly

genetically determined early in development (Adams et al., 1999;

Wang et al., 1998).

A subset of endothelial cells within the developing embryo

become further specialized into the cells of the lymphatic vascu-

lature (Oliver and Alitalo, 2005). Lymphatic endothelial cells first

appear as a polarized subset of cells lining the anterior cardinal

vein and then in more caudally located embryonic veins. These

specialized endothelial cells then migrate from the veins to

form primitive lymph sacs (Figure 1). From these structures,

lymphatic endothelial cells divide and sprout to give rise to the

entire lymphatic network, although these lymph sacs are not

required for the initial formation of the lymph nodes (Oliver and

Srinivasan, 2008; Vondenhoff et al., 2009).

Numerous studies have examined the signaling molecules

involved in vasculogenesis and angiogenesis, and it is well

established that vascular endothelial growth factors (VEGFs)

and their receptors are critical cell nonautonomous regulators

of endothelial cell and blood vessel formation (Ferrara, 2004;

Olsson et al., 2006). However, the transcriptional mechanisms

through which the expression of genes downstream of VEGF

receptors and the receptor genes themselves is activated and

maintained in endothelial cells remain important questions in

vascular biology. In addition, how VEGF and other signaling

pathways influence the array of transcription factors involved in

the endothelial gene expression program remains to be fully

elucidated.

Endothelial Transcription Factors
Tal1 and GATA2 are Key Regulators of Hematopoietic

and Endothelial Transcription

Many transcription factors are known to play an important role in

the activation and maintenance of endothelial gene expression

(Table 1). Given the common origin of blood and endothelial cells,

it is perhaps not surprising that several of the factors important for
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Figure 1. Schematic Representation of Endothelial Development
from Mesodermal Progenitors
Endothelial cells develop in the extraembryonic mesoderm in the yolk sac
within blood islands, which contain an inner layer of hematopoietic cells and
an outer layer of angioblasts. From these blood islands, a primitive vascular
plexus is formed. Within the embryo itself, angioblasts arise from mesodermal
progenitors to form aortas, cardinal veins, and the endocardium (not depicted).
the early development of endothelial cells are also important for

hematopoietic development (Table 2). For example, the bHLH

transcription factor Tal1 (SCL) is essential for both blood and

endothelial cell development (Bloor et al., 2002). Tal1 is

expressed early during embryogenesis in the development of

hematopoietic, endothelial, and neuronal precursor cells, and

disruption of Tal1 in either mouse or zebrafish results in severe

defects in the development of the vascular system (Green et al.,

1992; Kallianpur et al., 1994; Patterson et al., 2005; Visvader

et al., 1998; Figure 2). Interestingly, blood vessels do form in

the absence of Tal1, suggesting that this transcription factor

may not be required for the initial specification of endothelial cells

(Patterson et al., 2005; Visvader et al., 1998). On the other hand,

overexpression of Tal1 induces expression of several endothelial

genes in zebrafish, suggesting that this factor may be sufficient

for endothelial gene activation in vivo, at least in this context

(Gering et al., 1998). Consistent with this dominant role for Tal1,

several endothelial-specific gene enhancers are activated by

Tal1 through essential E-box binding elements (Table 1).

The zinc finger transcription factor GATA2 is also an important

regulator of both hematopoietic and endothelial genes. GATA2 is

the most abundantly expressed GATA factor in endothelial cells

(Lee et al., 1991), and numerous endothelial enhancers contain

GATA binding sites, which are bound directly by GATA2 (Table 1).

In addition, experiments in embryonic stem cells demonstrated

the importance of GATA2 in the development of Flk-1+/ Tal1+

hemangioblast-like cells and in the induction of endothelial-

specific genes (Lugus et al., 2007). Together, these studies

support the notion that GATA2 is an early regulator of hematopoi-

etic and endothelial development and that this transcription

factor may be involved in the specification of hemangioblast

progenitors from the mesoderm early in embryonic development.

Forkhead Proteins Are Important Regulators

of Endothelial Transcription

Members of at least five different subfamilies of Forkhead (Fox)

transcription factors are expressed in endothelial cells or their

precursors. These include members of the FoxC, FoxF, FoxH,

and FoxO families (Papanicolaou et al., 2008). Although no

Forkhead proteins are specific to endothelial cells or their

progenitors, several play essential roles in vascular biology and

endothelial transcription. Targeted disruption of Foxo1 in mice

causes vascular remodeling defects and midgestational lethality

(Furuyama et al., 2004; Hosaka et al., 2004; Kume et al., 2001;

Table 2). While it is clear that FoxO1 is required for vascular

development, the mechanism through which it controls endothe-

lial gene expression remains unresolved. FoxO factors are

generally thought to bind to and function through insulin

response elements (IREs) (Dejana et al., 2007; Furuyama et al.,

2003). However, FoxO regulation can occur independently of

these elements, and FoxO1 also binds to other divergent motifs

(De Val et al., 2008; Paik et al., 2007; Potente et al., 2005; Ram-

aswamy et al., 2002). Interestingly, FoxO1 functions as both

a positive and negative regulator of transcription, suggesting

that this factor may act as a transcriptional switch in the endothe-

lium (Daly et al., 2004; Paik et al., 2007).

The primitive embryonic and extraembryonic vasculature is then extensively
remodeled via angiogenic processes. Mature, differentiated arteries, veins,
and lymphatic vessels are formed from the remodeled embryonic vasculature.
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Table 1. A Partial List of Developmentally Regulated Endothelial Enhancers and Promoters

Gene Enhancer Location Binding Sites Binding Site Validation References

Mef2c (F10) intronic FOX:ETS (Etv2/FoxC2); ETS GS; Ch; M(Tg); TA (De Val et al., 2008)

Mef2c (F7) intronic ETS GS; M(Tg) (De Val et al., 2004)

Flk1 upstream FoxH1 GS; M(C) (Choi et al., 2007)

Flk1 promoter HIF2a; ETS M(Tg); TA (Kappel et al., 1999)

Flk1 intronic E box (Tal1); GATA; FOX:ETS

(Etv2/FoxC2)

GS; Ch; M(Tg); TA (Kappel et al., 2000)

(De Val et al., 2008)

Tal1 downstream ETS (Fli-1/Elf-1/Etv2);

GATA; FOX:ETS

GS; Ch; M(Tg) (De Val et al., 2008)

(Gottgens et al., 2002)

Tal1 upstream ETS (Fli-1/Elf-1) GS; Ch; M(Tg); M(C) (Gottgens et al., 2004)

Endoglin upstream ETS (Fli-1/Erg/Elf) Ch; M(Tg); M(C) (Pimanda et al., 2006)

Endoglin intronic ETS (Fli-1) Ch (Pimanda et al., 2008)

LMO2 promoter ETS (Fli-1/Elf-1/Ets-1) Ch; M(C) (Landry et al., 2005)

Fli1 intronic ETS; GATA; E box (Tal1)* Ch; M(Tg); M(C) (Pimanda et al., 2007)

Tie2 promoter ETS (Ets-1/Elf-1); FOX:ETS

(Etv2/FoxC2)

GS; Ch; M(Tg); TA (Dube et al., 1999) (Schlaeger

et al., 1997) (De Val et al., 2008)

(Minami et al., 2003)

Tie1 promoter ETS (Ets-1/Ets-2/Nerf2) M(Tg); TA (Iljin et al., 1999) (Korhonen

et al., 1995)

Flt1 promoter ETS M(C); TA (Minami et al., 2002) (Morishita

et al., 1995) (Wakiya et al., 1996)

Ve-cadherin

(Cdh5)

promoter ETS (Ets-1); GATA2*; FOX:ETS

(Etv2/FoxC2); E box (Tal1)

GS; Ch; M(Tg); TA (De Val et al., 2008)

(Deleuze et al., 2007)

Gata2 intronic E box (Tal1) GS; M(Tg) (Khandekar et al., 2007)

Gata2 upstream ETS (Fli-1); GATA2; E box

(Tal1)*

GS; Ch; M(Tg) (Kobayashi-Osaki et al., 2005)

(Pimanda et al., 2007)

Prox1(lymphatic) promoter Sox18 GS; Ch; M(C); TA (Francois et al., 2008)

ECE1 intronic FOX:ETS (Etv2/FoxC2) GS; Ch; M(Tg); TA (De Val et al., 2008)

FLT4 intronic FOX:ETS (Etv2/FoxC2) GS; Ch; M(Tg); TA (De Val et al., 2008)

PDGFRb intronic FOX:ETS (Etv2/FoxC2) GS; Ch (De Val et al., 2008)

FOXP1 intronic FOX:ETS (Etv2/FoxC2) GS; Ch (De Val et al., 2008)

NRP1 intronic FOX:ETS (Etv2/FoxC2) GS; Ch; M(Tg); TA (De Val et al., 2008)

NOTCH4 promoter/intronic FOX:ETS (Etv2/FoxC2) GS; Ch (De Val et al., 2008)

(Wu et al., 2005)

LYL1 promoter ETS (Fli-1/Elf-1/Erg)*; GATA2* Ch (Chan et al., 2007)

EPCR upstream ETS; GATA; E box (Tal1) M(C) (Mollica et al., 2006)

ICAM-2 promoter GATA GS; M(C); TA (Cowan et al., 1998)

The list includes regulatory elements that were validated in transgenic embryos and have one or more identified, validated binding sites for endothelial

transcription factors. Relevant references for each promoter/enhancer are listed. GS, gel shift assay (EMSA); Ch, chromatin immunoprecipitation;

M(Tg), mutagenesis in transgenic embryos; M(C), mutagenesis in cell culture assays; TA, trans-activation assays in cell culture. The asterisks indicate

factors identified by ChIP only.
FoxF1 and FoxH1 are also involved in endothelial gene

regulation. Inactivation of Foxf1 in mice results in a severe

vascular phenotype and embryonic lethality (Mahlapuu et al.,

2001; Table 2). Interestingly, Foxf1 is not expressed within

endothelial cells of the differentiated embryonic vasculature.

Rather, Foxf1 is expressed earlier in the splanchnic mesoderm

prior to endothelial cell specification and may regulate BMP

signaling, which is essential for vascular development (Astorga

and Carlsson, 2007). By contrast, FoxH1 may play an inhibitory

role in vascular development. In zebrafish, FoxH1 overexpres-

sion impairs vascular development and is a negative regulator

of flk1 expression through direct enhancer binding (Choi

et al., 2007).
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The FoxC family of Forkhead proteins is essential for vascular

development, and Foxc1�/�;Foxc2�/� mice have severe

vascular defects (Kume et al., 2001; Figure 3). Although endothe-

lial cells are specified in embryos lacking FoxC1 and FoxC2,

some studies have highlighted the requirement for these factors

in early endothelial development (De Val et al., 2008; Kume et al.,

2001). In addition, FoxC1 and FoxC2 have an important function

in arterial and lymphatic endothelial cell specification and may be

important downstream effectors of Notch signaling (Hayashi and

Kume, 2008; Seo et al., 2006). More recently, we have demon-

strated an important role for FoxC proteins as cofactors for Ets

proteins in the combinatorial regulation of endothelial gene

expression (De Val et al., 2008; discussed below).
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Krüppel-like Factors Regulate Endothelial Genes

in Response to Injury and Stress

Members of the Krüppel-like factor (KLF) transcription factor

family appear to function in endothelial cells after initial specifica-

tion and differentiation have already occurred (Atkins and Jain,

2007). Klf2 expression is induced by sheer stress and regulates

the expression of several genes important for maintaining

vascular tone in response to flow (Dekker et al., 2002; 2005;

Lee et al., 2006; SenBanerjee et al., 2004). In addition, Klf2 null

mice die by embryonic day (E)14.5 due to hemorrhage caused

by incorrect vessel stabilization and defective tunica media

formation (Kuo et al., 1997; Lee et al., 2006; Table 2). Although

less is known about their involvement in vascular biology, KLF4

and KLF6 are also expressed in endothelial cells, and their

expression is increased by sheer stress and vascular injury (At-

kins and Jain, 2007; Botella et al., 2002; Hamik et al., 2007; Ko-

jima et al., 2000; Yet et al., 1998). Interestingly, Krüppel-like

factors are also expressed in endothelial cells during vasculo-

genesis and early angiogenesis, but it remains to be determined

exactly how members of this family function in the early path-

ways that regulate endothelial cell specification and differentia-

tion.

Ets Transcription Factors Are Central Regulators

of Endothelial Gene Expression

Although many transcription factors play important roles in

vascular development, none appear to be as centrally involved

in the transcriptional programs controlling endothelial cell devel-

opment as Ets proteins. To date, all characterized endothelial

enhancers and promoters contain multiple essential ETS binding

sites (Table 1), and ETS motifs are strongly associated with endo-

thelial genes throughout the human genome (Bernat et al., 2006;

De Val et al., 2008). At least 19 different Ets factors are expressed

in human endothelial cells and over 12 are present in endothelial

cells in zebrafish (Hollenhorst et al., 2004; Liu and Patient, 2008).

Within the Ets family, Ets-1, Elf-1, Fli-1, Tel, and Erg each have

well-characterized roles in endothelial gene expression and

each bind to the enhancers and activate the expression of

numerous endothelial genes (Table 1). Knockdown of either

Ets1 or Erg expression in endothelial cells in culture results in

decreased endothelial cell migration and tube formation (Birdsey

et al., 2008; Iwasaka et al., 1996). Intriguingly, germline deletion or

mutation of the majority of individual Ets genes in either mouse or

zebrafish model systems has resulted in little or no vascular

phenotype or has caused defects only in later vascular remodel-

ing, while vasculogenesis remained largely intact (Barton et al.,

1998; Hart et al., 2000; Pham et al., 2007; Spyropoulos et al.,

2000; Wang et al., 1997; Table 2). This is most likely due to redun-

dancy among Ets factors in endothelial development. The excep-

tion to this apparent redundancy is observed when the function of

the Ets protein Etv2 (ER71, Etsrp71) is removed in mice or when

its ortholog Etsrp is knocked down in zebrafish (Ferdous et al.,

2009; Lee et al., 2008a; Sumanas et al., 2008). In contrast to other

Ets genes, inactivation of Etv2/Etsrp causes profound impair-

ment of vasculogenesis, suggesting a central role for this factor

in endothelial specification (discussed below).

The redundancy among the majorityof Ets factors in endothelial

biology probably reflects the fact that these proteins bind to iden-

tical or nearly identical cis-acting elements. The DNA binding

domain of Ets transcription factors, also known as the Ets domain,
is highly conserved among all members of the family, and all

Ets proteins bind to the same invariant GGA(A/T) core sequence

(Graves and Petersen, 1998). Although there are flanking

sequence requirements in addition to the invariant core

sequence, the majority of Ets proteins show preferential binding

to similar extended consensus sequences (Graves et al., 1996;

Gunther and Graves, 1994; Landry et al., 2005; Pimanda et al.,

2006). Furthermore, no Ets factors are exclusively expressed in

endothelial cells, and Ets proteins function in many develop-

mental processes other than the endothelial program, including

hematopoiesis, neuronal maturation, and bone development

(Bartel et al., 2000; Dalla Torre di Sanguinetto et al., 2008; Marou-

lakou and Bowe, 2000; Sharrocks, 2001). In addition, nearly two-

thirds of mammalian Ets factors are almost ubiquitous in their

expression in adult tissues, and ETS binding sites are not specific

to endothelial-expressed gene loci (Hollenhorst et al., 2004).

Indeed, it has been estimated that 5%–15% of gene promoters,

many for housekeeping genes, are bound by Ets proteins (Hollen-

horst et al., 2007). This has raised the question as to how Ets

proteins contribute to endothelial-specific gene expression.

Accordingly, it has been hypothesized that Ets factors must regu-

late endothelial-specific transcription by functioning in combina-

tion with other transcription factors. While this notion is likely to be

correct, as discussed below, recent studies have implicated two

individual Ets factors, Fli-1 and Etv2, as early, essential regulators

of endothelial cell specification.

The Ets Protein Fli-1 Is an Early Regulator of Endothelial

Development

The Ets transcription factor Fli-1 is expressed very early in cells

of the hematopoietic and endothelial lineages in mice and zebra-

fish (Brown et al., 2000; Melet et al., 1996). However, unlike other

early endothelial markers such as Tal1, Gata2, and Tie2, Fli1 is

expressed in cloche mutant zebrafish, which lack differentiated

endothelial cells and also have impaired hematopoietic develop-

ment (Brown et al., 2000; Liao et al., 1997; Stainier et al., 1995).

This early expression in cloche mutants, even in the absence of

clearly identifiable endothelial cells, suggests that Fli-1 may be

one of the earliest transcription factors involved in endothelial

and hematopoietic progenitor cell development. Gain-of-func-

tion experiments in zebrafish further support a role for Fli-1 in

early endothelial and hematopoietic specification. Injection of

an mRNA encoding a constitutive activator form of Fli-1 (Fli-

1-VP16) induced expression of Tal1, Gata2, and other hemangio-

blast markers but did not rescue the phenotype in Tal1

morphants, suggesting that Fli-1 acts upstream of Tal1 in the

hemangioblast and endothelial programs (Liu et al., 2008).

Fli1 also appears to function upstream of Gata2 in the hemato-

poietic and endothelial programs. Morpholino knockdown

experiments in Xenopus embryos at sites of primitive and defin-

itive hemangioblast populations showed that inhibition of Gata2

had no effect on Fli1 expression, whereas Fli-1 knockdown

moderately reduced Gata2 expression (Liu et al., 2008). Knock-

down of either Gata2 or Fli1 inhibited expression of other endo-

thelial markers, including Tal1, Lmo2, and flk1, suggesting that

the two factors both function early in the program, but that Fli1

may act upstream of Gata2 in regulation of hemangioblast

gene expression (Liu et al., 2008).

Finally, Ets sites within gene enhancers for Gata2, Tal1, and

Fli1 itself are essential for expression, and each of these
Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc. 183
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Table 2. A Partial List of Mouse and Zebrafish Knockouts and Knockdowns with Endothelial Phenotypes

Gene Mutation Phenotype References

Tal1 (Scl) mouse knockout;

zebrafish MO

lethal in the mouse at E9.5; failure of

hematopoiesis; endothelial specification

occurs; defective vascular remodeling

(Patterson et al., 2005;

Visvader et al., 1998)

Gata2 mouse knockout lethal by E10.5; normal vascular development;

failure of primitive erythropoiesis

(Tsai et al., 1994)

foxc1a zebrafish MO decrease in intersomitic vessel sprouting at 24 hpf (De Val et al., 2008)

foxc1b zebrafish MO decrease in intersomitic vessel sprouting at 24 hpf (De Val et al., 2008)

foxc1a;b zebrafish MO absence of intersomitic vessel sprouts, diminished

axial vessel formation at 24 hpf

(De Val et al., 2008)

Foxc2 mouse knockout lymphatic vessel hyperplasia, dysfunction and

abnormal lymphatic patterning

(Fang et al., 2000)

Foxc1/c2 mouse knockout lethal by E9.5; defective vascular remodeling,

arteriovenous malformations, loss of arterial

markers; defective heart development;

defects in somitogenesis

(Kume et al., 2001;

Seo et al., 2006)

Foxo1 mouse knockout lethal by E10.5; defective vascular

remodeling; cardiac looping defects

(Furuyama et al., 2004;

Hosaka et al., 2004)

Foxo3 mouse knockout enhanced postnatal vessel formation (Hosaka et al., 2004;

Potente et al., 2005)

Foxo4 mouse knockout no vascular or other defects observed (Hosaka et al., 2004)

Foxf1 mouse knockout defective mesodermal differentiation;

defects in yolk sac vascular patterning

(Mahlapuu et al., 2001)

Mef2c mouse knockout defective cardiac looping and myocardial

differentiation; failure of vascular remodeling

(Lin et al., 1998)

Klf2 mouse knockout hemorrhage due to incorrect tunica media

formation, incorrect vessel stabilization;

embryonic heart failure

(Kuo et al., 1997;

Lee et al., 2006)

Klf4 mouse knockout no obvious defects in endothelial

cell development or function

(Katz et al., 2002;

Segre et al., 1999)

Ets1 mouse knockout;

zebrafish MO

decrease in intersomitic vessel sprouting,

loss of trunk circulation at 24 hpf in zebrafish;

no obvious vascular defects in the mouse;

loss of NK cells in the spleen

(Barton et al., 1998;

Pham et al., 2007)

Fli1 mouse knockout;

zebrafish MO

lethal in the mouse by E12.5 with hemorrhage

and disruption of vessel tissue integrity;

defective hematopoiesis but endothelial

specification and initial differentiation

is normal; slight decrease in intersomitic

vessel sprouting in zebrafish morphants

(Pham et al., 2007;

Spyropoulos et al., 2000)

TEL mouse knockout lethal by E12; failure of vascular remodeling (Wang et al., 1997)

Etv2 (Er71) mouse knockout lethal by E9.5; apparent loss of endothelial

specification; complete lack of developed

vasculature; absence of early vascular markers

(Ferdous et al., 2009;

Lee et al., 2008a)

etsrp zebrafish mutation;

zebrafish MO

absence of intersomitic vessel sprouts,

loss of trunk circulation at 24 hpf;

defects in hematopoiesis

(Pham et al., 2007;

Sumanas and Lin, 2006)

etsrp; foxc1a zebrafish MO absence of intersomitic vessel sprouts,

diminished axial vessel formation

(De Val et al., 2008)

Lmo2 mouse knockout;

chimeric mice;

zebrafish MO

lethal in the mouse by E10.5; disorganization of

vascular development after E9, defective vascular

remodeling; decrease in intersomitic vessel

sprouts and axial vessel formation in zebrafish

(Patterson et al., 2005;

Warren et al., 1994;

Yamada et al., 2000)

Rbpj mouse knockout failure of vascular remodeling,

loss of arterial markers; defects

in somitogenesis and cardiac development

(Krebs et al., 2004)

Hey1 mouse knockout no obvious defects reported (Fischer et al., 2004b)
184 Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc.
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Table 2. Continued

Gene Mutation Phenotype References

Hey2 (grl) mouse knockout;

zebrafish mutation

cardiac defects in the mouse; development

of arteriovenous shunts, loss of aorta,

increased venous marker expression, decreased

expression of arterial markers in the zebrafish

(Fischer et al., 2004a;

Weinstein et al., 1995;

Zhong et al., 2001)

Hey1/2 mouse knockout failure of vascular remodeling, absence

of arterial markers

(Fischer et al., 2004b;

Kokubo et al., 2005)

Sox17 mouse knockout limited defects in anterior dorsal aorta,

enlarged cardinal vein; defective endoderm

development; aberrant cardiac looping

(Kanai-Azuma et al., 2002;

Sakamoto et al., 2007)

Sox18 mouse knockout mild subcutaneous edema, defective lymphatic

patterning; blood vasculature unaffected

(Francois et al., 2008)

Sox17;18 mouse knockout limited defects in anterior dorsal aorta

and head vasculature

(Sakamoto et al., 2007)

Sox7;18 zebrafish MO lack of trunk and tail circulation, fusions

between major axial vessels, errors

in arteriovenous specification

(Cermenati et al., 2008;

Pendeville et al., 2008)

Nr2f2 (Coup-TFII) mouse knockout;

conditional ko

lethal by E11.5; hemorrhage, thin and

dialated vessels, ectopic expression of

arterial markers, decrease of venous markers;

defective vascular remodeling; cardiac defects

(Pereira et al., 1999;

You et al., 2005)

Prox1 mouse knockout lethal by E14.5; no lymphatic vessels;

massive edema; blood vasculature unaffected

(Wigle and Oliver, 1999)

E, embryonic day; MO, morpholino knockdown. Relevant references are indicated.
enhancers is bound by Fli-1, further suggesting that Fli-1 func-

tions upstream in the hemangioblast program in a feed-forward

or recursive mechanism (Donaldson et al., 2005; Liu et al., 2008;

Pimanda et al., 2007). Importantly, disruption of Fli1 in either

mouse or zebrafish models does not result in significant vascular

defects (Figure 4), possibly due to the continued expression of

closely related factors Erg (in mouse) and Fli1b (in zebrafish)

(Hart et al., 2000; Pham et al., 2007; Spyropoulos et al., 2000).

Alternatively, this may suggest that Fli-1 plays a predominant

role in hemangioblast and subsequent hematopoietic develop-

ment, whereas other Ets factors, particularly Etv2 (discussed

below), may function in hemangioblast development and subse-

quent endothelial specification.

The Ets Transcription Factor Etv2 Is an Essential

Regulator of Endothelial Development

Several recent studies have shown that the Ets-related factor

Etv2 (ER71, Etsrp71), which was previously thought to be testis

specific, is essential for the development of endothelial and

blood lineages in the mouse (Ferdous et al., 2009; Lee et al.,

2008a; Sumanas et al., 2008). Etv2 expression is present at the

very early stages of vascular development in the mouse, with

expression detected in the blood islands of the yolk sac and

the earliest vessels in the embryo. Notably, Etv2 expression

begins decreasing within endothelial cell populations by E9.5

and is essentially extinguished in those lineages by E10.5, sug-

gesting an involvement of this transcription factor in early

vascular development (Ferdous et al., 2009; Lee et al., 2008a;

Lugus et al., 2007). Etv2 null mice have severe defects in vascu-

logenesis and hematopoiesis. Etv2�/� embryos die at midgesta-

tion and lack any detectable embryonic vessels, blood islands in

the yolk sac, or endothelial progenitors (Ferdous et al., 2009; Lee
et al., 2008a; Figure 5). Expression of early vascular markers,

such as flk1, Pecam, and Tie2-lacZ is almost completely abol-

ished in the absence of Etv2, and endothelial cells are apparently

not specified if Etv2 is not present (Ferdous et al., 2009; Lee

et al., 2008a).

Consistent with an early role for Etv2 in the endothelial cell

transcriptional hierarchy, Etv2 expression is highly enriched in

flk1+/Tal1+ hemangioblast-like embryonic stem cells, and Etv2

is also a potent inducer of Flk1+ mesoderm in embryonic stem

cells (Lee et al., 2008a). Furthermore, Etv2 is a potent activator

of several early endothelial genes, including flk1, Tal1, Mef2c,

Pecam, and Tie2, and has been demonstrated to activate these

genes through direct promoter or enhancer binding (De Val et al.,

2008; Ferdous et al., 2009; Table 1).

In zebrafish, the Ets transcription factor Etsrp is the likely ortho-

log of Etv2 (Pham et al., 2007; Sumanas et al., 2008; Sumanas and

Lin, 2006). Expression of etsrp is restricted to vascular endothelial

cells and their precursors, and knockdown of etsrp causes severe

defects in vascular development, although with variable pene-

trance (Pham et al., 2007; Sumanas et al., 2005; Sumanas and

Lin, 2006). In addition, y11 mutant zebrafish, which have a defec-

tive etsrp gene, lack intersegmental vessels at 24 hr post-fertiliza-

tion (hpf), and blood vessels in these embryos fail to undergo

correct tubular morphogenesis (Pham et al., 2007; Sumanas

et al., 2008). Notably, forced expression of Etsrp or mouse Etv2

in zebrafish leads to expansion of both hemangioblast and

vascular endothelial lineages (Sumanas et al., 2008). Taken

together, the mouse and zebrafish studies highlight a central early

role for Etv2/Etsrp in endothelial specification and suggest that

this transcription factor acts at or near the top of the transcrip-

tional network controlling endothelial cell development (Figure 6).
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Figure 2. Schematic Depiction of the Vascular and Hematopoietic Phenotypes in Tal1 Null Mouse Embryos at E9.5
A representation of the yolk sac vasculature is shown. Compared to wild-type embryos (A and C), Tal1 mutant embryos show an absence of blood cells (white
circles). Remodeling of the vascular endothelium is defective in mutant embryos (B), but endothelial cells (white ovals) are present in the mutant embryos (D),
suggesting that initial specification occurs properly. Arrowheads mark endothelium in (A) and (B) and endothelial cells in (C) and (D). Based on data published
in Visvader et al., 1998.
Combinatorial Regulation of Endothelial Transcription
Regulation by Multiple Factors through Clustered

Binding Sites

As noted above, no transcription factor is known to be expressed

exclusively in endothelial cells or their progenitors. This has led

to the suggestion that endothelial-specific gene expression is

controlled combinatorially by multiple transcription factors that

have overlapping expression in the endothelium. Indeed, many

endothelial-specific enhancers contain clustered binding sites

for multiple transcription factors, suggesting that endothelial

specificity may be achieved through the combination of these

sites and their cognate binding proteins. For example, several

characterized endothelial and hematopoietic enhancers contain

conserved binding sites for Ets and GATA transcription factors

(Table 1), suggesting that these two factors may function

together in the activation of these genes. Indeed, the Ets factors

Fli-1 and Elf-1 physically interact with GATA factors, and Ets and

GATA factors synergistically activate a megakaryocyte enhancer

from the GPIX gene and the endogenous ANG2 gene in HeLa

cells (Eisbacher et al., 2003; Gottgens et al., 2002; Pimanda

et al., 2006; Simon et al., 2008).

A genome-wide search for ETS and GATA sites in a similar

arrangement as that found in the Tal1 endothelial and hematopoi-

etic stem cell enhancer identified two additional enhancers in the

human FLI1 and PRH loci, which were each sufficient to direct

expression to endothelial and hematopoietic lineages in transgenic

mice (Donaldson et al., 2005). However, Ets and GATA factors are

coexpressed in many tissues other than the vasculature, and the
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67 ETS/GATA clusters identified in the genome-wide scan were

not enriched in their association with endothelial or hematopoieti-

cally expressed genes (Donaldson et al., 2005), suggesting that

other cis-acting elements must alsobe required to conferendothe-

lial specificity. Indeed, ETS and GATA sites have been found in

association with Tal1 E-boxes in enhancers from the fli1, Gata2,

flk1, and EPCR genes, and it has been proposed that GATA2,

Fli-1, and Tal1 form a self-reinforcing gene regulatory circuit for

early hematopoietic and endothelial cell gene expression (Kappel

et al., 2000; Mollica et al., 2006; Pimanda et al., 2007).

Although the mechanism through which Tal1, GATA2, and Ets

transcription factors function remains unresolved, their role in

endothelial gene coregulation suggests that the two may func-

tion as part of a biochemical complex (Pimanda et al., 2007).

Additional support for this notion comes from the observation

that the LIM domain protein LMO2 also associates with GATA2

and Tal1 as part of a multifactorial complex (Lahlil et al., 2004;

Wadman et al., 1997). LMO2 functions as a transcriptional

cofactor without directly binding DNA and is coexpressed with

Tal1 and GATA2 in blood and endothelial progenitors in zebrafish

(Liu et al., 2008). LMO2, Tal1, and GATA2 function together to

activate the VE-cadherin (Cdh5) promoter, and ectopic expres-

sion of Tal1 and Lmo2 together in zebrafish embryos results in

the induction of endothelial markers (Deleuze et al., 2007; Gering

et al., 2003). Interestingly, the VE-cadherin promoter also

contains several conserved ETS sites (Prandini et al., 2005), sug-

gesting that all of these factors may function together via their

clustered binding sites to confer endothelial specificity.
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Figure 3. Defective Differentiation of Arterial Endothelial Cells and Abnormal Artery Development in Foxc1; Foxc2 Double Mutant Mice at E9
Foxc1;Foxc2 double mutant mice exhibit arteriovenous malformations (white arrow in [B]) and abnormal expression of venous markers, such as COUP-TFII in
arteries (C and D). The white arrow in (C) marks the dorsal aorta (da) in the wild-type embryo, which expresses PECAM-1, but not COUP-TFII. The white arrow-
head in (C) marks the cardinal vein (cv) in the wild-type embryo, which properly expresses both PECAM-1 and COUP-TFII. The red arrow in (D) marks PECAM-1+
arterial endothelial cells, which aberrantly express COUP-TFII and other venous markers in double mutant embryos. nt, neural tube. The images shown were
reproduced, with permission, from Seo et al., 2006.
Combinatorial Regulation by Multiple, Distinct Ets

Family Members

Endothelial enhancers usually have multiple conserved Ets sites,

which occur in clusters (Table 1). Often, more than one of these

Ets sites is required for enhancer function, and many endothelial

enhancers appear to be bound by more than one individual Ets

family member (De Val et al., 2004; 2008; Gottgens et al., 2002;

2004; Landry et al., 2005; Pimanda et al., 2006; Prandini et al.,

2005). These observationshave led to the hypothesis thatmultiple,

discrete Ets proteins may function combinatorially to regulate

endothelial gene expression. In support of this idea, Pham et al.

(2007) showed that combined knockdown of four distinct Ets

genes caused a much more severe vascular phenotype in zebra-

fish than knock down of any of the individual Ets genes alone.

Although these studies suggest a possible interaction among Ets

proteins, they could also simply reflect that redundancy among

Ets family members exists in zebrafish, rather than cooperativity

or combinatorial regulation. Additional genetic and biochemical

studies are needed to resolve whether Ets proteins function coop-

eratively with themselves or other members of the Ets family.

Combinatorial Regulation through Composite Binding

Sites

As noted earlier in this review, Ets proteins are central regulators

of the endothelial transcriptional program. However, the wide-

spread distribution of Ets factors in the embryo, combined with

their ability to bind to identical cis-acting elements, presents
a challenge to understanding how endothelial specificity by

members of this transcription factor family may be achieved. It

has also been hypothesized that Ets proteins may bind to more

divergent sequences than the canonical ETS motif by

interacting with DNA in conjunction with other factors (Hollen-

horst et al., 2007). Indeed, recent studies by our group demon-

strate that Ets factors function combinatorially with FoxC tran-

scription factors through a composite DNA binding site, the

FOX:ETS motif, which consists of an ETS site and a noncanonical

Forkhead site (De Val et al., 2008). We found that evolutionarily

conserved FOX:ETS motifs were strongly associated with endo-

thelial genes throughout the human genome, and essential

FOX:ETS motifs were identified within numerous previously

characterized endothelial enhancers and promoters, including

those from Tal1, Tie2, flk1, and VE-cadherin (Cdh5) (De Val

et al., 2008). The FOX:ETS motif is bound robustly by FoxC2

and Etv2, and the two proteins bind the element simultaneously,

suggesting cooperativity by these factors.

Consistent with a cooperative role for FoxC2 and Etv2 in endo-

thelial gene activation, the two factors synergistically activate all

of the enhancers or promoters that contain a bona fide FOX:ETS

motif and were examined experimentally, including Mef2c,

Notch4, Tal1, Tie2, flk1, and VE-cadherin (De Val et al., 2008).

Interestingly, FoxC2 or Etv2 alone only weakly activated the

endothelial enhancer elements; strong synergy required both

factors together. Importantly, coexpression of FoxC2 and Etv2
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Figure 4. Schematic Representations of Mouse Yolk Sacs at E11 from Wild-Type and fli1 Mutant Embryos
Endothelial cells are properly specified and the vasculature is initially formed normally in mutant embryos. However, mutant embryos have a nearly complete
absence of blood cells (circles in [A)], indicating a profound defect in hematopoiesis. Based on data published in Spyropoulos et al., 2000.
together in a normally avascular region of Xenopus embryos

resulted in strong induction of endothelial genes and ectopic

vessel formation, while neither factor alone caused this effect

(De Val et al., 2008). Thus, these recent studies suggest a mech-

anism for endothelial gene activation and vascular development

depending on two factors, neither of which is specific to endo-

thelial cells, converging on a common composite cis-acting

motif. It will be interesting to determine whether this is a general

mechanism for endothelial gene activation and if Ets proteins

function combinatorially with factors other than FoxC proteins

by cobinding DNA through composite sites, as has been

proposed (De Val et al., 2008; Hollenhorst et al., 2007).

Transcriptional Control of Endothelial Subtype
Specification
Arteries and veins exhibit differences in gene expression prior to

the onset of blood circulation, indicating an important role for

genetic pathways in arteriovenous differentiation, and extensive

work in zebrafish and mouse model systems has demonstrated

an essential role for Notch signaling in arteriovenous identity

(Krebs et al., 2004; Krebs et al., 2000; Lawson et al., 2001; Villa

et al., 2001). Notch receptors are specifically expressed in arterial

cells, and Notch signaling functions in endothelial cells, at least in

part, to suppress venous fate (Lawson et al., 2001; Villa et al.,

2001). After binding by their cognate ligands, Notch receptors

are cleaved, and the Notch intracellular domain (NICD) translo-

cates to the nucleus, where it interacts with its obligate canonical

signaling partner RBP-J (CBF1), resulting in activation of Notch

target genes such as Hey1 and Hey2 (Roca and Adams, 2007).

Transcription Factors Involved in Arterial Specification

The Notch target genes Hey1 and Hey2 encode members of

the hairy and enhancer of split-related family of bHLH transcrip-
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tion factors and are mammalian orthologs of the zebrafish grid-

lock (grl) gene (Kokubo et al., 2005). Hey proteins are important

moderators of Notch signaling in arteriovenous specification.

grl is strongly expressed in the developing dorsal aorta but

not the axial vein in zebrafish, and grl mutants have defective

development of the dorsal aorta caused by arteriovenous

shunts (Weinstein et al., 1995; Zhong et al., 2001). Knockdown

of grl results in loss of the dorsal aorta, with a concomitant

increase in the size of axial vein. In addition, expression of arte-

rial markers is reduced in grl mutants, while expression of

venous markers is increased (Zhong et al., 2001). Conversely,

overexpression of grl causes a reduction in the size of the axial

vein. Taken together, these observations have led to the

suggestion that a gridlock-dependent pathway controls the

formation of the dorsal aorta in zebrafish by determining arte-

rial-venous identity (Zhong et al., 2001). Similarly, compound

Hey1;Hey2 double knockout mice die at midgestation with

severe vascular defects and lack the expression of arterial

markers (Fischer et al., 2004b; Kokubo et al., 2005), further

supporting a role for Hey transcription factors and upstream

Notch signaling in arterial identity.

In addition to their role in vasculogenesis in cooperation with

Ets proteins, the Forkhead transcription factors FoxC1 and

FoxC2 are essential for arteriovenous specification. Foxc1/

Foxc2 compound null mice display vascular fusions between

arteries and veins, and the expression of many arterial markers,

including Notch1, Notch4, Dll4, Jagged1, and Hey2, are absent

in these mice even though the expression of panendothelial

markers is maintained (Kume et al., 2001; Seo et al., 2006).

Furthermore, expression of either FoxC1 or FoxC2 in fibroblast

and endothelial cell lines increases expression of arterial-

specific genes, and the promoter regions of the arterial marker
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genes Hey2 and Dll4 are bound and activated by FoxC proteins

(Hayashi and Kume, 2008; Seo et al., 2006). Since the expres-

sion of Foxc1 and Foxc2 is not restricted to the arterial

compartment, it has been proposed that FoxC-specific regula-

tion of arterial genes may be achieved in combination with

NICD and RBP-J, which implicates FoxC proteins in the

VEGF and Notch signaling pathways (Hayashi and Kume,

2008).

Members of the F-subgroup Sox transcription factor family

Sox7, Sox17, and Sox18 may also be required for correct arterio-

venous specification. Knockdown of the orthologs of sox7 and

sox18 together in zebrafish causes severe vascular defects (Cer-

menati et al., 2008; Pendeville et al., 2008). sox7; sox18 mor-

phants lack trunk and tail circulation, exhibit multiple fusions

between the major axial vessels, and have aberrant expression

of arterial markers (Cermenati et al., 2008; Pendeville et al.,

2008). A dominant-negative form of Sox18 is the cause of the

ragged mouse mutant, which exhibits cardiovascular pheno-

types (James et al., 2003; Pennisi et al., 2000a; 2000b), and inac-

tivation of Sox18 on an inbred background results in defects in

lymphatic vasculature and embryonic lethality (Francois et al.,

2008).

Figure 5. Etv2 Null Mice Fail to Specify Endothelial Cells
Immunohistochemical staining for Flk1 (A and B) at E9.5 shows normal
endothelial cell specification and differentiation and vessel remodeling
in wild-type embryos (A), whereas Etv2 (Er71) mutants have no detect-
able expression ofFlk1 (B). Similarly,blood-filled vessels arenot present
in the yolk sac of Etv2 mutant embryos (D) at a stage when they are
obvious in wild-type controls ([C], arrowheads). This is due to loss of
detectable endothelial cells and profound defects in hematopoiesis.
(E and F) Schematic representations of frontal sections from wild-type
(E) and Etv2 (Etsrp71) (F) mutant embryonic hearts at E8.5, indicating
that the endocardium is not properly specified in mutant embryos, as
evidenced by the loss of expression of Endomucin and other endothelial
markers (denoted in blue in [E]). The images shown in (A–D) were repro-
duced, with permission, from Lee et al., 2008a. The schematic images
shown in (E) and (F) are based on data published in Ferdous et al., 2009.

COUP-TFII Regulates Differentiation of Venous

Endothelium

COUP-TFII (encoded by the Nr2f2 gene), a nuclear

receptor bound and activated by retinoic acid, which

may be its endogenous ligand, functions as a key regu-

lator of venous identity by suppressing Notch signaling

(Kruse et al., 2008; You et al., 2005). COUP-TFII expres-

sion in the endothelium is limited to veins and lymphatics,

and deletion of the Nr2f2 gene in mice results in embry-

onic lethality due to vascular defects. Notably, the

absence of COUP-TFII causes inappropriate expression

of arterial markers, including Nrp1 and Notch1, in veins,

supporting a role for this transcription factor in venous

identity (Pereira et al., 1999; You et al., 2005). Further

evidence for a role for COUP-TFII in venous identity

comes from gain-of-function studies in mice. Overex-

pression of COUP-TFII in all endothelial cells caused

defects in angiogenesis, large fused vessels, and lack of

arterial-venous distinction (You et al., 2005). Based on

these and other studies, it has been proposed that

COUP-TFII acts by suppressing Nrp1 expression and in-

hibiting Notch signaling, which results in suppression of

arterial-specific genes and activation of venous genes (You

et al., 2005). However, this model remains to be tested, and

the mechanisms through which COUP-TFII suppresses arterial

fate remain to be elucidated.

Transcriptional Regulation of Lymphangiogenesis

The SRY-box containing transcription factor Sox18 may act as

a molecular switch inducing the differentiation of lymphatic

endothelial cells. The human disease hypotrichosis-lymphe-

dema-telangiectasia, characterized by chronic swelling of the

extremities due to dysfunction of the lymphatic vessels, is

caused by SOX18 mutation (Irrthum et al., 2003). Similarly,

Sox18 null mice die by E15 with massive edema, and Sox18

heterozygous mice display defects in their lymphatic vasculature

(Francois et al., 2008). Overexpression of Sox18 in embryonic

stem cells or cultured endothelial cells results in increased

expression of lymphatic markers, including Prox1 (Francois

et al., 2008). Interestingly, Sox18 expression precedes Prox1

expression in the dorsolateral sector of the anterior cardinal

veins, the first site of lymphangiogenesis in mice, suggesting

that Sox18 may function upstream of Prox1 and be among the

earliest regulators of lymphatic endothelial cell specification. In

support of this notion, a 4 kb Prox1 promoter fragment, which
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Figure 6. Different Stages in Endothelial Development Are
Regulated by Distinct Sets of Transcription Factors
This model depicts the steps within endothelial cell development from meso-
dermal progenitors and hemangioblasts to differentiated arterial, venous, and
190 Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc.
recapitulates endogenous Prox1 expression in transgenic mice,

is bound and activated by Sox18 (Francois et al., 2008).

The homeodomain transcription factor Prox1 has often been

described as the master regulator of lymphangiogenesis (Adams

and Alitalo, 2007; Hong and Detmar, 2003; Hong et al., 2002;

Oliver and Alitalo, 2005). Prox1 expression is first observed in

a subset of venous endothelial cells, where lymphangiogenesis

initiates (Adams and Alitalo, 2007; Hong and Detmar, 2003; Oliver

and Alitalo, 2005; Wigle and Oliver, 1999). Although Prox1

expression is not restricted to endothelial cells, within the vascu-

lature, it is only detected in lymphatic endothelial cells (Rodri-

guez-Niedenfuhr et al., 2001; Wigle and Oliver, 1999). Prox1

null mice fail to develop any lymphatic vasculature and die by

E15 due to massive edema, even though the blood vasculature

is not affected (Wigle and Oliver, 1999). These loss-of-function

and expression data point to an essential role for Prox1 in early

lymphangiogenesis. Furthermore, Prox1 is sufficient to promote

a lymphatic fate. Forced expression of Prox1 in cultured blood

endothelial cells increases the expression of genes specific to

the lymphatic endothelium, such as Podoplanin (Pdpn) and flt4

(Vegfr3), and the concomitant downregulation of blood endothe-

lial genes (Hong et al., 2002; Petrova et al., 2002).

Despite the obvious importance of Prox1 in the specification of

lymphatic endothelial cells, surprisingly few putative direct tran-

scriptional targets of Prox1 have been identified (Mishima et al.,

2007; Shin et al., 2006). It has recently been proposed that Prox1

may activate the expression of lymphatic endothelial genes in

combination with COUP-TFII, which is a key regulator of venous

identity, as discussed earlier in this review. COUP-TFII and Prox1

proteins are coexpressed in sprouting lymphatic endothelial

cells and newly formed lymphatic vessels, and the two factors

physically interact (Lee et al., 2008b). Prox1 and COUP-TFII

synergistically activate the expression of Fgfr3, a known Prox1

target, which is more prominently expressed in lymphatic endo-

thelial cells than in blood endothelial cells (Lee et al., 2008b; Shin

et al., 2006). In addition, siRNA knockdown of the two factors

causes significant reduction in Fgfr3 and flt4 expression (Lee

et al., 2008b). Although the precise cis-motifs required for

Prox1/COUP-TFII regulation of gene expression have not been

identified, the synergy between the two factors provides further

evidence that tissue-specific gene activation can be achieved by

transcription factors with broader expression than just the endo-

thelium through combinatorial activation.

Concluding Remarks and Future Perspectives
The cell autonomous regulatory networks that control endothelial

development are rapidly being decoded, and many transcription

factors involved in endothelial specification and differentiation

have been identified. Numerous studies have highlighted the

roles of individual transcription factors in endothelial develop-

ment and gene expression through genetic, biochemical, and

cell culture-based approaches, but many important questions

lymphatic endothelium and the various transcription factors associated with
their development. This model depicts the speculation that Fli-1, GATA2,
and Tal1 control differentiation of hematopoietic cells from hemangioblasts,
while Etv2 and FoxC proteins control the differentiation of endothelial cells
from that progenitor population and that Etv2 likely sits at the top of this tran-
scriptional cascade.
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remain unanswered. In particular, the combinatorial mechanisms

through which these transcription factors achieve endothelial cell

specification are only beginning to be deciphered. Our recent

identification of a combinatorial mechanism involving members

of the Forkhead and Ets transcription factors (De Val et al.,

2008) suggests a paradigm for how endothelial genes may be

regulated through composite cis-acting elements, but it is

unclear whether other endothelial transcription factors will utilize

a similar mechanism. Other recent studies have suggested more

conventional mechanisms for how endothelial-specific gene

regulation may be achieved through the combined actions of

several transcription factors interacting independently with their

respective binding sites in endothelial enhancers and promoters

(Kappel et al., 2000; Khandekar et al., 2007; Pimanda et al., 2007).

Although these mechanisms are certainly not mutually exclusive,

it will be important to define how different classes of endothelial

transcription factors function biochemically and combinatorially

to achieve specificity. Similarly, it will be essential to place endo-

thelial transcription factors into a regulatory hierarchy and to

define even earlier regulators of the endothelial program. Recent

studies discussed in this review have identified several key endo-

thelial factors as early regulators of endothelial specification, but

how these factors themselves are regulated transcriptionally and

posttranscriptionally remains to be determined. The Etv2 gene is

regulated, at least in part, by the homeodomain transcription

factor, Nkx2-5, which activates Etv2 through its proximal

promoter in endocardial progenitors (Ferdous et al., 2009). It

will be important to determine if Nkx2-5 regulates other early

endothelial factors in the endocardium and how the same endo-

thelial factors are transcriptionally activated in other endothelial

progenitor populations.

Several signaling pathways are well known for their cell nonau-

tonomous roles in vasculogenesis and angiogenesis, but how

these pathways affect transcription factor function during devel-

opment remains largely undefined. For example, it is likely that

VEGF signaling influences the posttranslational modifications

of numerous endothelial transcription factors, but this notion

remains to be established. Interestingly, recent studies show

that VEGF-activated PI3K and MAPK signaling pathways influ-

ence the transcriptional activity of the FoxC transcription factors

(Hayashi and Kume, 2008). Ets transcription factors are also

likely to be widely regulated posttranslationally during endothe-

lial development. Indeed, Ets-1 DNA binding affinity is regulated

by phosphorylation of multiple independent sites that func-

tion additively, suggesting that calcium-dependent signaling

controls a graded DNA binding response (Pufall et al.,

2005). It will be important to determine how other endothelial

Ets factors are regulated by phosphorylation and whether

this influences protein-DNA or protein-protein interactions.

This observation is consistent with earlier observations that

the MAP kinase ERK promotes arterial specification while

PI3K signaling promotes venous specification (Hong et al.,

2006). Given the role of FoxC1 and FoxC2 in arterial specifi-

cation, these studies suggest that posttranslational modifica-

tion of the FoxC factors may be central to arteriovenous

differentiation. These studies may also reconcile the seem-

ingly disparate roles for FoxC1 and FoxC2 as cofactors for

Etv2 in early vasculogenesis and subsequent arteriovenous

specification by allowing the FoxC proteins to participate in
differential interactions based on phosphorylation state. It is

likely that other endothelial transcription factors are also

regulated by phosphorylation and other posttranslational

modifications during development, and decoding these path-

ways and how they control endothelial development will be

an essential area for future investigation.

The mechanism through which endothelial transcription

factors modify chromatin to render endothelial loci accessible

and other genes inaccessible is also a topic that remains incom-

pletely understood. As noted in this review, combinatorial control

by multiple transcription factors is likely to account for endothe-

lial specificity. However, it is also likely that histone modifica-

tions, particularly acetylation, will play a major role in opening

chromatin and contributing to endothelial specificity, but this

hypothesis remains to be tested fully and the role of chromatin

modify enzymes in endothelial-specific gene regulation has not

been examined in detail (Matouk and Marsden, 2008). Since

many of the transcription factors involved in vasculogenesis,

including numerous Ets proteins, are expressed outside endo-

thelial cells and yet do not activate endothelial genes in those

other lineages, the influence of chromatin accessibility in endo-

thelial gene activation needs to be resolved.

Finally, aberrant blood vessel growth is a significant cause of

age-related macular degeneration, and excessive blood vessel

growth underlies proliferative diabetic retinopathy (Andreoli

and Miller, 2007; Simo et al., 2006). In addition, vascularization

of solid tumors is essential for their growth and eventual metas-

tasis (Carmeliet and Jain, 2000; Stacker et al., 2002). Current

therapies for inhibiting angiogenic vessel growth in these and

other disorders are primarily aimed at blocking VEGF and other

signaling pathways (Ferrara, 2004; Goh et al., 2007). It is attrac-

tive to speculate that blocking essential endothelial transcription

factors or their interactions may be an alternative approach for

inhibiting vascularization. As we unravel the transcriptional

networks, upstream signaling pathways, and chromatin modifi-

cations involved in endothelial cell development and corre-

sponding vessel growth, new molecular targets for positively

and negatively modulating vessel growth should emerge.
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