Transmembrane Helix Straightening and Buckling Underlies Activation of Mechanosensitive and Thermosensitive K$_{2P}$ Channels

Marco Lolicato,1 Paul M. Riegelhaupt,1,2 Cristina Arrigoni,1 Kimberly A. Clark,1 and Daniel L. Minor, Jr.1,3,4,5,*

1Cardiovascular Research Institute
2Department of Anesthesia and Perioperative Care
3Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology
4California Institute for Quantitative Biomedical Research
University of California, San Francisco, San Francisco, California 93858-2330, USA
5Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*Correspondence: daniel.minor@ucsf.edu
http://dx.doi.org/10.1016/j.neuron.2014.11.017

SUMMARY
Mechanical and thermal activation of ion channels is central to touch, thermosensation, and pain. The TRAAK/TREK K$_{2P}$ potassium channel subfamily produces background currents that alter neuronal excitability in response to pressure, temperature, signaling lipids, and anesthetics. How such diverse stimuli control channel function is unclear. Here we report structures of K$_{2P}$4.1 (TRAAK) bearing C-type gate-activating mutations that reveal a tilting and straightening of the M4 inner transmembrane helix and a buckling of the M2 transmembrane helix. These conformational changes move M4 in a direction opposite to that in classical potassium channel activation mechanisms and open a passage lateral to the pore that faces the lipid bilayer inner leaflet. Together, our findings uncover a unique aspect of K$_{2P}$ modulation, indicate a means for how the K$_{2P}$ C-terminal cytoplasmic domain affects the C-type gate which lies ∼40Å away, and suggest how lipids and bilayer inner leaflet deformations may gate the channel.

INTRODUCTION
Detection of mechanical (Anishkin et al., 2014; Kung, 2005; Nilius and Honore’, 2012) and thermal (Bandell et al., 2007; Jordt et al., 2003; Vriens et al., 2014) stimuli is fundamental to the survival of both single-cell (Haswell et al., 2011; Kung et al., 2010) and multicellular organisms (Julius, 2013; Tsunozaki and Bautista, 2009). The ability to link mechanical and thermal changes with transmembrane ionic fluxes provides a direct means to couple stimulus detection to a rapid host response. Molecular studies have identified a diverse set of ion channels in the nervous system that have the capacity to detect and respond to mechanical and thermal cues. Members of the K$_{2P}$ potassium channel family (Honore’, 2007; Nilius and Honore’, 2012; Noël et al., 2011), transient receptor potential (TRP) family (Anishkin et al., 2014; Julius, 2013; Kung, 2005; Vay et al., 2012; Vriens et al., 2014), and newly discovered Piezo channels (Bagriantsev et al., 2011; Nilius and Honore’, 2012) are thought to possess intrinsic mechanisms through which they detect and respond to pressure changes, temperature changes, or both. Although structural data have begun to become available for these families (Brohawn et al., 2012, 2013; Cao et al., 2013; Kamajaya et al., 2014; Liao et al., 2013), the molecular mechanisms by which such channels can detect and sense changes in pressure and temperature remain incompletely understood.

K$_{2P}$ potassium channels generate leak currents that are important modulators of neuronal activity (Enyedi and Czirjak, 2010; Lesage and Barhanin, 2011). Unlike voltage-gated or inward rectifier channels, K$_{2P}$s conduct ions over the entire physiological voltage range. Nevertheless, the magnitude of the leak current can be tuned by diverse inputs including natural effectors such as pressure, temperature, pH, lipids, and phosphorylation as well as exogenous agents such as anesthetics (Mathie et al., 2010). The mechanosensitive and thermosensitive subclass of K$_{2P}$s (Noël et al., 2011) comprising K$_{2P}$4.1 (TRAAK) (Maingret et al., 1999a), K$_{2P}$2.1 (TREK-1) (Dedman et al., 2009; Fink et al., 1996; Patel et al., 1998), and K$_{2P}$10.1 (TREK-2) (Bang et al., 2000; Lesage et al., 2000b), have particularly important roles in pain and anesthetic responses (Alou et al., 2006; Noël et al., 2009; Patel et al., 1999; Pereira et al., 2014). K$_{2P}$4.1 (TRAAK) and K$_{2P}$2.1 (TREK-1) are also positively modulated by lipids such as lysophospholipids, polyunsaturated fatty acids such as arachidonic acid (AA), and phosphatidylinositol 4,5-bisphosphate (PIP$_2$) (Bang et al., 2000; Chemin et al., 2005a, 2005b, 2007; Fink et al., 1998; Lopes et al., 2005; Maingret et al., 2000b). The capability of this K$_{2P}$ subclass to respond to both pressure (Bagriantsev et al., 2011; Brohawn et al., 2014; Kim et al., 2001b; Maingret et al., 1999a, 1999b; Noël et al., 2009; Patel et al., 1998) and temperature (Bagriantsev et al., 2011; Kang et al., 2005; Maingret et al., 2000a; Noël et al., 2009) raises the possibility that these two physical modalities feed into a common mechanism that controls channel function and is supported by recent studies (Bagriantsev et al., 2011, 2012).
Functional investigation indicates that, unlike other classes of potassium channels, K$_{2P}$s use a “C-type” gate, comprising the selectivity filter, as the principal site of gating, rather than an intracellular obstruction (Bagriantsev et al., 2011, 2012; Cohen et al., 2008; Piechotta et al., 2011; Rapedius et al., 2012). This view is corroborated by recent K$_{2P}$ crystal structures showing intracellular obstruction (Bagriantsev et al., 2011, 2012; Cohen et al., 2008; Piechotta et al., 2011; Rapedius et al., 2012). This view is corroborated by recent K$_{2P}$ crystal structures showing a basic architecture in which there is an unhindered path for ions from the cytoplasm to the selectivity filter (Brohawn et al., 2012, 2013; Miller and Long, 2012). Although crystallographic studies of K$_{2P}4.1$ (TRAAK) (Brohawn et al., 2012, 2013) and K$_{2P}1.1$ (TWIK-1) (Miller and Long, 2012) have revealed the overall architecture of the K$_{2P}$ family, the functional states represented by these crystal structures have been unclear.

In the mechanosensitive and thermosensitive K$_{2P}$ subfamily, a variety of studies indicate that the cytoplasmic C-terminal tail is an important element in controlling gating by pressure, temperature, intracellular pH, and phosphorylation (Bagriantsev et al., 2012; Chemin et al., 2005b; Honore et al., 2002; Kim et al., 2001a, 2001b; Mathie et al., 2010). Mechanistic studies suggest that changes in the intracellular C-terminal tail are directly transmitted to the C-type gate via the pore-lining M4 helix (Bagriantsev et al., 2011, 2012). Hence, we anticipated that these mutants should activate K$_{2P}4.1$ (TRAAK) and affect modulation by various types of gating commands. Nevertheless, because these K$_{2P}4.1$ (TRAAK) mutants had not been previously characterized, we used patch clamp electrophysiology to examine how they affected responses to three stimuli known to activate K$_{2P}4.1$ (TRAAK): the polyunsaturated fatty acid AA (Brohawn et al., 2014; Lesage et al., 2000a, 2000a); the mechanosensitive and thermosensitive K$_{2P}$ small-molecule activator ML67-33 (Bagriantsev et al., 2013), and membrane stretch (Brohawn et al., 2014; Lesage et al., 2000a; Maingret et al., 1999a). As expected, we found that both G124I and W262S blunted the K$_{2P}4.1$ (TRAAK) responses in a manner similar to the effects of the analogous changes on K$_{2P}2.1$ (TREK-1) (Bagriantsev et al., 2011, 2012) and in a manner consistent with channel activation (Figure 2). W262S reduced the ability of ML67-33 and pressure to activate the

RESULTS

Structure and Function of K$_{2P}4.1$ (TRAAK) Mutants

We determined the crystal structures of two mutants of the human mechanosensitive, thermosensitive, and lipid-modulated K$_{2P}$ channel, K$_{2P}4.1$ (TRAAK), G124I and W262S at 3.3Å and 3.4Å resolution, respectively (Figures 1 and S1 available online; Table 1). These mutations reside on the P1 pore helix that contacts the top of M4 (G124I) or on the complementary side of M4 facing P1 (W262S) (Figures 1, S1B, and S1C). Previous studies have demonstrated that analogous mutations activate the C-type gate of K$_{2P}2.1$ (TREK-1) (Bagriantsev et al., 2011, 2012) and alter the gating of a number of other K$_{2P}$s (Bagriantsev et al., 2011, 2012). Both mutants crystallized in the P2$_1$2$_1$2$_1$ space group having one channel dimer per asymmetric unit, comparable to the wild-type K$_{2P}4.1$ (TRAAK) crystals (Brohawn et al., 2012). The overall structures of G124I and W262S resemble the previously reported K$_{2P}4.1$ (TRAAK) structures (Brohawn et al., 2012, 2013) (Table S1). However, unlike a structure from a similar crystal habit (Brohawn et al., 2012), the M1 transmembrane helix is domain swapped in both mutants in a manner matching the domain swap seen in the K$_{2P}4.1$ (TRAAK)/Fab complex (Brohawn et al., 2013). This result supports the idea that the domain-swapped architecture is an intrinsic property of K$_{2P}4.1$ (TRAAK), and is not a consequence of Fab binding.

Cognate mutations to K$_{2P}4.1$ (TRAAK) G124I and W262S activate the closely related mechanosensitive and thermosensitive channel K$_{2P}2.1$ (TREK-1) (Bagriantsev et al., 2011, 2012). Hence, we anticipated that these mutants should activate K$_{2P}4.1$ (TRAAK) and affect modulation by various types of gating commands. Nevertheless, because these K$_{2P}4.1$ (TRAAK) mutants had not been previously characterized, we used patch clamp electrophysiology to examine how they affected responses to three stimuli known to activate K$_{2P}4.1$ (TRAAK): the polyunsaturated fatty acid AA (Brohawn et al., 2012; Fink et al., 1998; Kim et al., 2001a; Lesage et al., 2000a), the mechanosensitive and thermosensitive K$_{2P}$ small-molecule activator ML67-33 (Bagriantsev et al., 2013), and membrane stretch (Brohawn et al., 2014; Lesage et al., 2000a; Maingret et al., 1999a). As expected, we found that both G124I and W262S blunted the K$_{2P}4.1$ (TRAAK) responses in a manner similar to the effects of the analogous changes on K$_{2P}2.1$ (TREK-1) (Bagriantsev et al., 2011, 2012) and in a manner consistent with channel activation (Figure 2). W262S reduced the ability of ML67-33 and pressure to activate the
channel, but had a modest effect on AA stimulation (Figures 2B, 2D, and 2E). By contrast, G124I effectively rendered the channel insensitive to further activation by any of the stimuli (Figures 2C–2E). This rank order matches that seen for the analogous K_{2P}4.1 (TREK-1) mutants (Bagriantsev et al., 2012), and given the similarities between K_{2P}4.1 (TRAAK) and K_{2P}4.1 (TREK-1), suggests that the G124I and W262S structures represent conformations adopted by an activated K_{2P} channel.

Pore-Lining M4 Helix of Activating Mutants Bends and Twists around a Conserved Glycine

The conformations of the two polypeptide chains comprising the G124I and W262S channels are nonidentical (Figures S2A and S2B). The largest structural asymmetry occurs in the lower half of the channel and is most evident in the conformations of intracellular portions of M2, M3, and M4 helices. Similar conformational heterogeneity was also seen in the structures of K_{2P}4.1 (TRAAK) (Brohawn et al., 2012) and K_{2P}4.1 (TRAAK)/Fab complex (Brohawn et al., 2013). It is notable that in all of these cases, one chain of the dimer, chain B, makes substantial crystal lattice contacts through interactions of the intracellular parts of M2, M3, and M4 with either the extracellular CAP domain or Fab from another channel complex in the crystal lattice (Figure S3). By contrast, chain A is unhindered, and thus, we focused our initial analysis on comparisons of this chain in each of the structures.

The changes in the vicinity of the mutations in the G124I and W262S structures appear modest. In both, the N-terminal end of M4 is closer to the P1 helix when compared with the K_{2P}4.1 (TRAAK)/Fab complex (Figure S1B). Additionally, in both chains of the G124I structure, the Trp262 side chain undergoes a rotamer switch that matches that seen in chain A of the K_{2P}4.1 (TRAAK)/Fab complex (Brohawn et al., 2013, 2014) (Figures S1B and S1C). This local change avoids a clash with the increased size of the asparty side chain at G124I and is consistent with the idea of cross-talk between the P1 pore helix and M4 transmembrane helix at these two positions (Bagriantsev et al., 2012).

In contrast to the modest structural changes near the mutation sites, we observe substantial conformational changes in elements of the channel distant from the G124I and W262S mutations. These alterations are most pronounced in the G124I mutant (Figures 1A, 1B, and S2). Prior structure determinations of K_{2P}4.1 (TRAAK) revealed differences in the position of the M4 pore-lining helix of the unrestrained subunit (Brohawn et al., 2012, 2013). This channel element adopts an elevated position that closes one of the lateral openings to the bilayer in the K_{2P}4.1 (TRAAK)/Fab complex structure (Brohawn et al., 2013). We take this conformation as the reference for analyzing G124I and W262S.

In both K_{2P}4.1 (TRAAK) G124I and W262S, the pore-lining M4 helix is much straighter than either of the conformations observed in the wild-type K_{2P}4.1 (TRAAK) structures (Figures 1A, 3A, and 3B) and is tilted by ~27° and ~23°, respectively, relative to K_{2P}4.1 (TRAAK)/Fab complex M4. This change leads to a movement of ~8 Å of Asn281, which is the last common residue visible among the G124I, W262S, and K_{2P}4.1 (TRAAK)/Fab complex structures. These differences are much greater than the ~11° difference between the two wild-type K_{2P}4.1 (TRAAK) structures (Figure 3B). M4 tilting is accompanied by a loss of helical structure over its last two turns (Figures 3A, 3B, and S4A).

Additionally, the G124I helix has a slight counterclockwise twist when viewed from the N-terminal end. The M4 tilt in G124I and W262S is centered on Gly268 (Figure 3A). This residue is strictly conserved across all K_{2P}s (Figure S4A) and corresponds to a conserved glycine in the pore-lining helix that is central to the gating of diverse classes of potassium channels (Bavro et al., 2012; Cuello et al., 2010a; Jiang et al., 2002; Magidovich and Yifrach, 2004; Uysal et al., 2009). Notably, this position also matches the glycine at the center of crystallographically observed bending motions of multiple conformational states of the pore-lining helices of KcsA (Cuello et al., 2010a, 2010b; Uysal et al., 2009) and KirBac3.1 (Bavro et al., 2012) that are related to activation gating.

Superposition of the N-terminal portions of all K_{2P}4.1 (TRAAK) M4s reveals a family of conformations C terminal to Gly268 in which the unhindered “A” chains from the K_{2P}4.1 (TRAAK)/Fab complex and G124I structures represent the extremes (Figure 3C). M4 helices from all of the “B” chains populate the center of this distribution, are quite similar, and largely follow the path of the W262S mutant (Figure 3C). The observation of this family of M4 conformations demonstrates that this helix can make graded changes between the bent K_{2P}4.1 (TRAAK)/Fab complex chain A conformation and the G124I straight conformation. Notably, the degree of bending is similar to that described for a series of KcsA
structures (Cuello et al., 2010b). However, unlike in KcsA (Cuello et al., 2010a, 2010b; Uysal et al., 2009) and KirBac3.1 (Bavro et al., 2012) where closed channels have a straight pore-lining helix that forms an intracellular gate and bend into the activated conformation, activated K_{2P}4.1 (TRAAK) mutants have a straight pore-lining helix.

M4 Movement Correlates with the Extent of M2 Buckling at a Conserved GXG

The K_{2P}4.1 (TRAAK) M2 transmembrane helix is unusual. It is longer than the other transmembrane helices and has a kink at Pro155 that causes it to run somewhat parallel to the plane of the membrane below the selectivity filter (Brohawn et al., 2012). In the G124I structure, M4 movement is accompanied by a displacement and flexing of M2 at the point where it contacts M4 in a manner that resembles a buckling motion (Figures 1B, 4A, and 4B). This disruption of the helix begins at K_{2P}4.1 (TRAAK) residues 163–165, a “GXG” sequence that is conserved within the subfamily of mechanosensitive- and temperature-sensitive K_{2P}s (K_{2P}4.1 (TRAAK), K_{2P}2.1 (TREK-1), and K_{2P}10.1 (TREK-2)) (Figure S4B), and propagates over four helical turns into the loop beginning at Trp186 that joins the M2 and M3
helices (Figures 4A and 4B). Besides being strictly conserved in the mechanosensitive and thermosensitive K$_{2P}$ subfamily, a variant of the GXG sequence in which the first residue is replaced by a small amino acid is found in all TASK channels (K$_{2P}$3.1 (TASK-1), K$_{2P}$9.1 (TASK-3), K$_{2P}$5.1 (TASK-2), and K$_{2P}$7.1 (TASK-5)) (Figure S4B).

M2 buckling leads to a displacement of the helix toward the cytoplasmic face of the channel (Figure 4B). In the region of largest perturbation, from Ser170 to Ile176, the M2 C$_{α}$ positions move by a distance that is greater than a helix diameter (~5.2–5.6 Å) and undergo an ~10° twist toward the cytoplasmic face. Local buckling of the M2 helix also occurs in the W262S mutant, but to a more limited extent, similarly beginning at Gly163 and propagating to Ile179, rather than into the M2-M3 loop (Figure 4C). The K$_{2P}$4.1 (TRAAK) structure also has a similar, but smaller, distortion beginning at Gly163 and ending at Leu168. These large differences in M2 are mostly absent in chain B (Figure S5). Taken together, the structures show that the extent of M2 buckling matches with the extent of M4 helix straightening and suggest that these two conformational changes are coupled (Movie S1).

Quaternary Changes between Resting and Activated States Open a Side Door to the Membrane

The conformational changes in M4 and M2 have a number of striking consequences for the channel quaternary structure. Comparison of the M4 position between its two extreme conformations seen in the K$_{2P}$4.1 (TRAAK)/Fab complex and G124I shows that in the elevated conformation, M4 of one subunit contacts M2 of the other subunit along a hydrophobic interface formed between M2 residues Leu151, Val152, Pro155, Leu156, and Ile159 and M4 residues Phe272, Leu276, Ile279, and Leu283 (Figure 5A). This configuration likely resembles the resting position of the activation gate in the absence of stimuli. This interface is disrupted when M4 straightens to the G124I conformation (Figure 5B). Once straightened, M4 makes a new set of interactions with both M2 and M3 of its own subunit. The largest changes are for Phe272/M4, which interacts with the backbone of Cys206/M3, and Val275/M4, which interacts with Phe201/M3 and Leu202/M3 (Figures 5C and 5D). The consequence of these changes is that the so-called “side window” that has been proposed as an interaction site for hydrophobic modulators such as lipids (Brohawn et al., 2012) and that is present in the K$_{2P}$4.1 (TRAAK) structure (Brohawn et al., 2012), but closed in the K$_{2P}$4.1 (TRAAK)/Fab complex (Brohawn et al., 2013), transforms into a completely open “door.” This door is framed by residues from M2 of one subunit and the base of pore helix 2 and residues from M4 of the neighboring subunit (Movies S2 and S3). This door is completely lined by hydrophobic residues (Figure 5B) and would seem to provide a natural place for the binding of lipids in the inner leaflet of the bilayer or for activating compounds. It is striking that this dramatic architectural change could allow easy lipid access without requiring a reorientation of the lipids from their natural poses in which the hydrophilic head is on the cytoplasmic side of the bilayer, and the hydrophobic tails are in the membrane core.

A second effect of M4 movement is that the M2 buckling disrupts the interface between M2 and M3 formed by residues Ser197, Phe201, Ile204, Leu168, Leu172, and Ile176 in the K$_{2P}$4.1 (TRAAK)/Fab complex (Figures 5E and 5F). In this disruption, Leu172 translates toward the cytoplasmic side, occupies the position formerly held by Ile176, and makes hydrophobic interactions with Phe201. Ile176 moves out of the interface and makes no new protein-protein interactions. Finally, when viewed from the cytoplasmic side, the structural changes result in a
substantial repositioning of the C-terminal end of M4. As this part of the protein is directly connected to the C-terminal tail, such movement offers a clear means for how changes in the status of the C-terminal tail can be propagated to the C-type gate via M4 as previously suggested from functional studies (Bagriantsev et al., 2012).

Currently, the only other structural information for the K_{2P} family comes from studies of K_{2P}1.1 (TWIK-1), a channel that is insensitive to mechano- or thermal activation and whose crystal structure is thought to represent an open state (Miller and Long, 2012). In this regard, it is especially striking that the M4 positions of the K_{2P}4.1 (TRAAK) G124I and W262S gain-of-function mutants superpose well with the K_{2P}1.1 (TWIK-1) M4 (Figures 6A and 6B). The K_{2P}1.1 (TWIK-1) structure showed an M4 helix leading to a loop that is followed by a short helix running parallel to the expected membrane inner leaflet, the C-helix. This transition starts at K_{2P}1.1 (TWIK-1) Leu270, a residue that is structurally equivalent to K_{2P}4.1 (TRAAK) Leu283, which is the last visible residue in the W262S mutant. Interestingly, W262S has an M4 position that is more similar to K_{2P}1.1 (TWIK-1) M4 than G124I. The K_{2P}1.1 (TWIK-1) M2 helix is shorter than that of K_{2P}4.1 (TRAAK), but follows the general direction of the buckled M2 of W262S and G124I, rather than the more gently curved path of the K_{2P}4.1 (TRAAK)/Fab M2 (Figure 6C). Consequently, its position relative to the cytoplasmic face of the channel is intermediate between the displaced position of the G124I M2 and that of K_{2P}4.1 (TRAAK)/Fab (Figure 6D). The conformational snapshots of K_{2P}4.1 (TRAAK) revealed by the two wild-type and two mutant structures, taken together with the similarities of the G124I and W262S structures with a likely open state channel represented by K_{2P}1.1 (TWIK-1), suggest that the series of K_{2P}4.1 (TRAAK) structures characterizes the conformations that link the channel resting state, embodied by the K_{2P}4.1 (TRAAK)/Fab complex, and the activated state, exemplified by G124I.

The Hydrophobic Face of the M2 Helix Is Important for Thermal Responses and Coupling to the C-Type Gate

The most unexpected structural change in K_{2P}4.1 (TRAAK) G124I and W262S is the buckling of the M2 helix that occurs concomitantly with M4 straightening (Figure 4). Given these findings and the absence of prior functional studies aimed at the K_{2P} M2 helix, we set out to test the importance of key M2 features for channel function. Because coupling between various channel elements and the C-type gate is readily measured in the closely related mechanosensitive and thermosensitive channel K_{2P}2.1 (TREK-1) (Bagriantsev et al., 2011, 2012; Cohen et al., 2008), we used K_{2P}2.1 (TREK-1) to investigate the consequences of disruption of the M2/M3 interface and glycine of the GXG sequence that initiates the M2 buckling.

Alanine-scanning mutagenesis along the portion of the K_{2P}2.1 (TREK-1) M2 helix involved in the observed structural buckling of K_{2P}4.1 (TRAAK) revealed enhanced baseline channel activity from substitutions at positions comprising the M2/M3 interface, Leu181, Gly182, Phe185, and Ile189, but no effects from changes to residues residing on the opposite face of the M2 helix (Figures 7A and 7B). Because prior studies have established a
clear correlation between increased baseline activity and C-type gate stabilization (Bagriantsev et al., 2011, 2012), these data suggest that disruption of the hydrophobic packing between M2 and M3 is important for channel activation. To test this idea directly, we examined the stability of the C-type gate to closure by extracellular acidosis (Bagriantsev et al., 2011, 2012; Clarke et al., 2008; Cohen et al., 2008; Lopes et al., 2000; Niemeyer et al., 2010) for two of the interface mutants that correspond to positions most affected by the rearrangement, K2P2.1 (TREK-1) F185A and I189A, and the double mutant F185A/I189A. All of these changes stabilized the C-type gate to closure by acidic pH, with the largest change observed in the double mutant (Figure 7C) (pH 7.5 IC50 = 7.51 ± 0.03, 7.27 ± 0.07, 7.15 ± 0.10, 7.00 ± 0.14 for wild-type, F185A, I189A, and F185A/I189A, respectively). Furthermore, examination of the temperature responses of these channels shows that they have blunted responses to temperature increases, with the strongest effect being found in the F185A/I189A (Figure 7D). Taken together, these data support the idea that disruption of the M2/M3 interface caused by M2 helix buckling is central to channel activation and is coupled to stabilization of the C-type gate.

Having established the link between the M2/M3 interface with C-type gate stabilization and altered thermal responses, we next examined the importance of the most conserved element of the GXG motif, the second glycine corresponding to K2P4.1 (TRAAK) Gly165. This residue appears to be a key point in allowing the helix to bulge (Figure 4A) and is conserved in the mechanosensitive and thermosensitive subfamily as well as in the TASK channels (Figure S4B). To investigate this position, we examined the consequences of enabling or inhibiting the ability of this residue to be distorted within the context of the M2 helix by substituting the Gly165 equivalent of K2P2.1 (TREK-1), Gly178, with two amino acids, one that should facilitate kinking, proline (Cordes et al., 2002; Yohannan et al., 2004a, 2004b), and one that should inhibit helix kinking, alanine (Faham et al., 2004). Tests of the temperature responses revealed channels that behaved exactly as expected if the kink at the second GXG glycine is important for activation (Figures 7E and 7F). G178P channels were activated, whereas the currents of the G178A mutants were suppressed and showed a greatly diminished temperature response relative to wild-type. Taken together, these results are entirely consistent with the inferences derived from the K2P4.1 (TRAAK) structures and support the idea that the bending and buckling of M2 is an essential part of activation of mechanoactivated and thermoactivated channels from the TREK/TRAAK subfamily.

DISCUSSION

Investigation of the molecular mechanisms by which pressure (Anishkin et al., 2014; Kung, 2005) and temperature (Chowdhury et al., 2014; Clapham and Miller, 2011) changes affect channel gating is one of intense current focus. Channels from the K2P subfamily encompassing K2P4.1 (TRAAK), K2P2.1 (TREK-1), and K2P10.1 (TREK-2) are notable for being activated by both temperature and mechanical cues (Dedman et al., 2009; Noël et al., 2011). Hence, mechanistic studies of this subclass should not only provide insights into how these particular channels activate in response to pressure and temperature, but also into the general principles that govern the molecular mechanisms of channel gating.
Neuron Activation Mechanism of Mechanosensitive K\textsubscript{2P}s

Gating input. Determination of the structures of two K\textsubscript{2P}4.1 respond to such stimuli, but also should elaborate general principles of how ion channels respond to mechanical and thermal gating input. Determination of the structures of two K\textsubscript{2P}4.1 (TRAAK) gain-of-function mutants reveals unexpected structural changes in the M4 and M2 transmembrane helices that when taken together with prior K\textsubscript{2P}4.1 (TRAAK) structures (Brohawn et al., 2012, 2013) reveal a series of molecular transformations that we propose underlie K\textsubscript{2P} channel activation (Figures 6A–8C). The key conformational changes are: (1) conversion of the M4 helix from a bent to a straight conformation centered on the conserved glycine at K\textsubscript{2P}4.1 (TRAAK) residue 268, (2) buckling of the M2 helix at the conserved GXG sequence found in all mechanosensitive and thermosensitive K\textsubscript{2P}s, and (3) the disruption of the M2/M3 interhelix interface caused by the movements of M4 and M2.

The molecular transformation of M4 around the conserved glycine looks very much like the one described from crystallographic studies of the KcsA (Cuello et al., 2010a, 2010b) and Kir-Bac3.1 (Bavro et al., 2012) potassium channels, albeit with one crucial difference. Whereas in these channels the transformation is from a straight helix in the resting state to a bent pore-lining helix in the activated state, the transition in K\textsubscript{2P}4.1 (TRAAK) appears as the exact opposite: the pore-lining helix is bent at rest, and the activated helix is straight. Unlike other potassium channel classes, K\textsubscript{2P} channels are not thought to have a closed inner gate that forms a physical barrier to ion passage, but instead rely on a C-type gate at the selectivity filter (Bagriantsev et al., 2011, 2012; Piechotta et al., 2011; Rapedius et al., 2012). The unusual dimeric architecture of K\textsubscript{2P}s precludes the formation of the convergence of the cytoplasmic ends of the pore-lining helices that would correspond to the classical inner gate seen in other types of channels from this superfamily (Doyle et al., 1998; Payandeh et al., 2011; Shaya et al., 2014; Zhang et al., 2012).

Thus, it appears that free from this constraint, the K\textsubscript{2P} architecture has been able to harness similar movements, but to opposite functional effects. Although our structures reveal key conformational changes in the cytoplasmic portions of the channel, how these changes affect the conformation of the C-type gate remains unclear. Even though there are local changes near the G124I and W262S activating mutants, we were unable to discern any clear changes in the core element of the C-type gate, the selectivity filter. This observation is similar to that made with prior K\textsubscript{2P}4.1 (TRAAK) structural analysis (Brohawn et al., 2013) and may reflect the limited resolution of the crystallographic data or indicate that the main effects that control the C-type gate are dynamic, rather than strictly structural, or both. It is worth noting that allosteric coupling between a selectivity filter-based gate and movements of the pore-lining helix has been described structurally for C-type inactivation in KcsA (Cuello et al., 2010a, 2010b), and hence, we expect that it should be possible to describe analogous changes in K\textsubscript{2P}s. Such questions and the details of how a similar M4 movement can lead to opposite outcomes for selectivity filter function will need to be addressed by a combination of higher-resolution structures, functional investigation, and simulation studies.

The asymmetry seen between the subunits in each of the K\textsubscript{2P}4.1 structures may provide an important clue about how K\textsubscript{2P}s function. Although the unhindered subunit can adopt a wide range of conformations, in all the structures the subunit that is pinned by crystal lattice interactions near the cytoplasmic side of M2, M3, and M4 shows a conformation that resembles the W262S mutant, which we interpret as an activated state. The ability to trap the M4 helix of subunits engaged in crystal contacts suggests that the energetic barriers for moving this part of the protein are not exceptionally high and must be sampled by the precrystallized state. This concept matches well with the observed behavior of K\textsubscript{2P}s in response to stimuli. Gating cues cause the activity of these channels to change in a much more gradual manner than the essentially binary modulation associated with channels in which opening the hydrophobic barrier to ion passage formed by the pore-lining helices is the
Figure 7. Mutations in the M2/M3 Interface and M2 Buckling Point Activate K_{2P}2.1 (TREK-1) and Affect Thermal Responses

(A) Quantification of normalized current amplitudes measured by two-electrode voltage clamp at 0 mV from Xenopus oocytes injected with 1.2 ng of mRNA for the indicated K_{2P}2.1 (TREK-1) channels.

(B) Data from (A) mapped onto the K_{2P}4.1 (TRAAK) M2/M3 interface (Figure 5C). Orange indicates residues for which alanine substitution stimulated basal current. Teal indicates residues in which alanine substitution had no effect. K_{2P}2.1 (TREK-1) numbers are shown in parentheses.

(C) Exemplar currents for the indicated channels and normalized pH_{O} responses (at 0 mV).

(D) Temperature responses at 0 mV for the indicated channels.

(E) Exemplar two-electrode voltage-clamp recordings of the response of K_{2P}2.1 (TREK-1), G178A, and G178P to temperature in 2 mM [K^+]_o (pH 7.4) solutions.

(F) Temperature responses at 0 mV for the indicated channels. Where indicated, parentheses indicate the number of independent measurements. Error bars are mean ± SEM.
critical last step for entry into the conductive state. Functional studies using tandem dimer constructs suggest that signals from the main sensor, the cytoplasmic C-terminal domain, are transmitted through M4 to the pore within a single subunit (Bagriantsev et al., 2012). The observed crystallographic asymmetry is very much in line with this notion. Moreover, the observation that interactions at M2/M3/M4 junction affect function suggests that this region may be a target for both natural and designed modulators. Indeed, a number of anesthetics are thought to use elements from this channel region (Andres-Enguix et al., 2013).

Figure 8. Models of K_{2p} Gating
(A) Proposed activation sequence for mechanosensitive and thermosensitive K_{2p}s. Space-filling models are shown for the structures of the K_{2p}4.1 (TRAARK)/Fab complex (Brohawn et al., 2013), K_{2p}4.1 (TRAARK) (Brohawn et al., 2012), W262S, and G124I. The M2 helix of one subunit is shown in orange. M4 helices are colored as follows: K_{2p}4.1 (TRAARK)/Fab complex (gray), K_{2p}4.1 (TRAARK) (yellow), W262S (firebrick), and G124I (marine).
(B) Structures in (A) viewed from the cytoplasmic face. C-terminal end of M4 is indicated. The lateral door and possible path of the C-terminal tail is indicated for G124I.
(C) Cartoon model of the key K_{2p} moving parts. Conserved M4 glycine and M2 GXG sequences are indicated. Changes in the C-type gate and association of the C-terminal tail with the membrane is based on models from Bagriantsev et al. (2012); Chemin et al. (2005b); and Sandoz et al. (2011).
(D) Space-filling models of the K_{2p}4.1 (TRAARK)/Fab complex (Brohawn et al., 2013) and G124I as models for the resting and activated states, respectively. Possible bilayer boundaries are indicated. Concept of lateral lipid through the lateral door in G124I access is shown.
2001b). This element is not visible in any of the K2P4.1 (TRAAK) observations about the K2P4.1 (TRAAK) activated state suggest the et al., 2005b; Sandoz et al., 2008) (Figure 8C). The structural ob-

tion (Chemin et al., 2005b; Honore´ et al., 2002; Kim et al., 2001a, 2001b), pH (Honore´ et al., 2002), and lipid modula-
tion (Chemin et al., 2005b; Honore´ et al., 2002; Kim et al., 2001a, 2001b). This element is not visible in any of the K2P4.1 (TRAAK) structures reported thus far. However, the conformational changes we see in K2P4.1 (TRAAK) G124I and W262S cause a substantial repositioning of the M4 C terminus, which is co-

ervantly connected to the tail (Figure 8B; Movie S4). Moreover, the correspondence of the activated position of M4 from G124I and W262S with that of the related channel K2P1.1 (TWIK-1) in which this region is visible in the structure (Miller and Long, 2012) may provide some clues to potential locations of the C-ter-

mal tails. In the G124I and W262S structures, there is a loss of helical structure upon helix straightening that occurs in the same region where the K2P1.1 (TWIK-1) structure transitions into a linker lacking secondary structure that connects M4 with the C-helix and that places the C terminus in the vicinity of the M2/M3 loop. It is striking that two residues implicated in modulation of the related channel K2P2.1 (TREK-1), Ser300, which is the C-terminal tail of K2P2.1 (TREK-1) associates with the bilayer (Chemin et al., 2005b; Honore´ et al., 2002), would be in the vicinity of the M2/M3 loop. Prior studies have suggested that upon activation, the C-terminal tail of K2P2.1 (TREK-1) associates with the bilayer (Chemin et al., 2005b; Sandoz et al., 2008) (Figure 8C). The structural ob-

servations about the K2P4.1 (TRAAK) activated state suggest the possibility that this part of the protein may interact with both the bilayer and the protein as part of the activation mechanism. The cytoplasmic C-terminal tail is a critical sensory element of the K2P4.1 (TRAAK) family members, being involved in tempera-
ture (Bagrantsyev et al., 2012; Maingret et al., 2000a; Patel et al., 1998), pressure (Chemin et al., 2005b; Honore´ et al., 2002; Kim et al., 2001a, 2001b), pH (Honore´ et al., 2002), and lipid modula-

tion (Chemin et al., 2005b; Honore´ et al., 2002; Kim et al., 2001a, 2001b). This element is not visible in any of the K2P4.1 (TRAAK) structures reported thus far. However, the conformational changes we see in the K2P4.1 (TRAAK) G124I and W262S cause a substantial repositioning of the M4 C terminus, which is co-

ervantly connected to the tail (Figure 8B; Movie S4). Moreover, the correspondence of the activated position of M4 from G124I and W262S with that of the related channel K2P1.1 (TWIK-1) in which this region is visible in the structure (Miller and Long, 2012) may provide some clues to potential locations of the C-ter-

mal tails. In the G124I and W262S structures, there is a loss of helical structure upon helix straightening that occurs in the same region where the K2P1.1 (TWIK-1) structure transitions into a linker lacking secondary structure that connects M4 with the C-helix and that places the C terminus in the vicinity of the M2/M3 loop. It is striking that two residues implicated in modulation of the related channel K2P2.1 (TREK-1), Ser300, which is the C-terminal tail of K2P2.1 (TREK-1) associates with the bilayer (Chemin et al., 2005b; Honore´ et al., 2002), would be in the vicinity of the M2/M3 loop. Prior studies have suggested that upon activation, the C-terminal tail of K2P2.1 (TREK-1) associates with the bilayer (Chemin et al., 2005b; Sandoz et al., 2008) (Figure 8C). The structural ob-

servations about the K2P4.1 (TRAAK) activated state suggest the possibility that this part of the protein may interact with both the bilayer and the protein as part of the activation mechanism. Structures of a number of channels have revealed the pres-

ence of lateral openings to the bilayer from the central channel pore (Brohawn et al., 2012, 2013; McCusker et al., 2012; Miller and Long, 2012; Payandeh et al., 2011, 2012; Shaya et al., 2014; Zhang et al., 2012). Because, as in the structures reported here, there is often evidence of nonprotein electron density in these openings, it has been suggested that such features pro-

vide means for hydrophobic modulators, and possibly even lipids, to affect channel function (Brohawn et al., 2012, 2013; Miller and Long, 2012; Nilius and Honore´, 2012; Payandeh et al., 2011, 2012; Payandeh and Minor, 2014; Zhang et al., 2012). The lateral nature of such “windows” to the bilayer is puzz-

ling as it is not clear how much lipids from either portion of the bilayer might have to contort to gain access. In the case of K2P4.1 (TRAAK), the two structures presented here eliminate this prob-

lem. The consequence of the large movement caused by the straightening of the M4 helix is that the lateral window that is closed in the most elevated position of M4 (Brohawn et al., 2013) and open in the intermediate M4 pose (Brohawn et al., 2012) becomes a door that appears to face the inner leaflet of the bilayer (Figures 6A and 8D). Such an aperture would allow facile lipid binding for modulators of TRAAK such as AA (Bang et al., 2000; Chemin et al., 2005a, 2005b, 2007; Fink et al., 1998; Maingret et al., 2000b) and PI2 (Lopes et al., 2005), as it would only require a lateral movement of the lipid from the inner bilayer leaflet (Figure 8D). This hypothesis is appealing as in such a scenario both the hydrophobic headgroup and fatty acid tails of the lipid could remain in their cognate environments similar to the means by which PI2 is thought to interact with Kir3 (GIRK) channels (Whorton and MacKinnon, 2011).

Finally, the distortions of the protein we associate with acti-

vated conformations seem to be in line with the general idea that factors such as membrane stretch and elevated temperature will cause structural transitions in the channel protein (Anishkin et al., 2014; Haswell et al., 2011; Kung, 2005; Nilius and Honore´, 2012). The disruption of a small hydrophobic core between M2 and M3 matches the expectation from protein folding studies in which changes of hydrophobic interfaces are central to thermal transitions (Baldwin, 1986; Privalov and Gill, 1988). This apparent convergence of thermal and pressure-induced activation mechanisms suggests that both perturbations rely on similar disruptions in the protein architecture.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

G124I and W262S mutations were introduced by site-directed mutagenesis into a previously described P. pastoris pPICZ vector bearing the human K2P4.1 (TRAAK) (Gl:13124080) gene residues 1–300 followed by a C-terminal GFP and His10 tag (Brohawn et al., 2012). Plasmids were linearized with Pmel and transformed into P. pastoris SMID163 by electroporation. Multi-

integration recombinants were selected by plating transformants onto yeast extract peptone dextrose sorbitol (YPDS) plates at increasing concentrations of zeocin (1–4 mg mL−1).

Fluorescence-detection size-exclusion chromatography (FSEC) screening (Drew et al., 2008; Kawate and Gouaux, 2006; Newstead et al., 2007) was used to evaluate expression levels of individual transformants. Ten of the most zeocin-resistant colonies of each mutant were picked and grown in a 10 ml minimal medium (2 × yeast nitrogen base [YNB] [Sigma, #Y0626], 1% glycerol, 0.4 mg L−1 biotin, 40 mg L−1 L-histidine, 100 mM potassium phosphate [pH 6.0]) to OD600 = 10 (4–8 days). Methanol was added to a final concentration of 0.5% (v/v). After 24 hr induction, additional methanol (final concentration of 0.5% (v/v)) was added, and the induction continued for another 24 hr. Cells were harvested by centrifugation (3,000 × g at 4°C, 10 min) and resuspended in 1 ml of lysis buffer (150 mM KCl, 1 mM PMSF, 50 mM Tris–Cl [pH 8.0]). A total of 0.3 g of acid-washed glass beads were then added to each sample. Cells were broken by vortexing (3 × 3 min) and centrifuged (100,000 × g at 4°C, 20 min). The pellet was resuspended in 500 μl of solubilization buffer (150 mM KCl, 1 mM PMSF, 60 mM n-dodecyl-

beta-D-maltopyranoside [DDM], 50 mM Tris–Cl [pH 8.0]) and incubated at 4°C for 1 hr. Debris was removed by centrifugation (100,000 × g at 4°C, 30 min), and the supernatant was loaded onto a Superose 6 column (GE Healthcare, 10/300 GL) equilibrated with FSEC buffer (150 mM KCl, 1.5 mM DDM, 20 mM Tris–Cl [pH 8.0]) and connected to an auto sampler (Shimadzu, SL-

L-20AHT/20AChT) and in-line fluorescence detector (Shimadzu, RF-10A). Fluorescence profile of each clone (485 nm excitation/540 nm emission) was compared. Clones with the highest fluorescence intensity and narrowest, most symmetric peak were chosen for large-scale growth.

For large-scale expression, a 120 ml starting culture was grown in buffered minimal medium (2 × YNB, 1% glycerol, 0.4 mg L−1 biotin, 40 mg L−1 L-histidine, 100 mM potassium phosphate [pH 6.0]) for 2 days at 29°C and used at a
ratio of 1/100 to inoculate twelve 2.8 L flasks containing 1 L each of buffered minimal medium. Cells were grown on a shaker (29 °C, 235 rpm) for 2 days, harvested by centrifugation (3,000 x g at 20 °C, 6 min), and resuspended in fresh minimal medium in which the glycerol was replaced by 0.5% (v/v) methanol to induce expression. After 24 hr, additional methanol was added (final concentration 0.5% [v/v]) to the culture. Cells were pelleted by centrifugation (6,000 x g at 4 °C for 30 min) 48 hr after initial induction, snap frozen in liquid nitrogen, and stored at −80 °C.

Cells were broken by cryomilling (Retsh model MM400) in liquid nitrogen G x 3 min, 25 Hz). In between each milling step the canisters were placed in liquid nitrogen to cool. All subsequent purification was carried out at 4 °C. Cell powder was added at a ratio of 1 g cell powder/4 ml lysis buffer (150 mM KCl, 60 mM DDM, 0.1 mg ml⁻¹ DNase, 1 mM PMSF, 100 mM Tris-Cl [pH 8.2], and 1 tablet/50 ml of EDTA-free complete inhibitor cocktail [Roche]). Membranes were extracted as previously reported (Brohawn et al., 2012) for 3 hr with gentle stirring followed by centrifugation (100,000 x g at 4 °C, 45 min).

Solubilized proteins were purified by affinity chromatography using batch purification. Talon cobalt resin (Clontech Laboratories, #635503) was added to the supernatant at a ratio of 1 ml of resin per 10 g of cell powder and incubated overnight at 4 °C with gentle shaking. Resin was collected into a column and washed with four column volumes (CVs) of buffer A (150 mM KCl, 6 mM DDM, 10 mM imidazole, 50 mM Tris [pH 8.0]) followed by a second wash step using four CVs of buffer A containing 20 mM imidazole (pH 8.0). Bound protein was then eluted using four CVs of buffer A containing 500 mM imidazole (pH 8.0).

Affinity column eluate was supplemented to contain 50 mM KCl and 1 mM EDTA. To remove the affinity tag, 3C protease (Shaya et al., 2011) was added at a ratio of 10:1 (wt/wt) fusion protein:protease and incubated with gentle rocking overnight. Protein concentration was determined by UV absorbance at 280 nm in native buffer, using the extinction coefficient of the fusion protein ε = 61,497 M⁻¹ cm⁻¹ and ε = 66,997 M⁻¹ cm⁻¹ for W262S and G124I, respectively. The resulting mixture was applied to a desalting column (HiPrep 26/10, GE Healthcare, #17-5087-01) using buffer B as eluent (10 mM KCl, 2 mM DDM, 50 mM Tris-Cl [pH 8.0]). Desalted sample was applied to an anion-exchange column (8 ml POROS 50 HQ, #1-2559-11) and eluted with a linear gradient to 500 mM KCl over 35 CVs. Fractions containing the protein were pooled, concentrated, and applied to a Superdex 200 column equilibrated in buffer C (150 mM KCl, 1 mM DDM, 1 mM EDTA, 20 mM Tris-Cl [pH 8.0]).

Crystalization and Structure Determination

Purified W262S and G124I were concentrated to 10–13 mg ml⁻¹ by centrifugation (6,000 x g at 4 °C, 45 min). Two-electrode voltage clamp electrophysiology

Neuron
Activation Mechanism of Mechanosensitive K_{2P}s

Patch-Clamp Electrophysiology

The sequence coding for human K_{2P,4.1} (TRAAK) (hK_{2P,4.1} (TRAAK); GI:13124080) was subcloned into pIRE2-EGFP for mammalian expression. HEK293T cells were transfected (in 35 mm diameter wells) with LipofectAMINE 2000 (Invitrogen) and plated onto coverslips coated with Matrigel (BD Biosciences).

The effects of AA and stretch activation were characterized as previously described (Maingret et al., 1999a). Effects of AA and ML67-33 activation on hK_{2P,4.1} (TRAAK). W262S, and G124I were measured by whole-cell patch-clamp experiments 24 hr after transfection. Acquisition and analysis were performed using pCLAMP9 and an Axopatch 200B amplifier (Molecular Devices). The pipette resistance ranged from 1 to 2.5 MΩ. Series resistance was compensated by 60%–80%. Pipette solution contained the following, in millimolars: 145, KCl; 3, MgCl₂; 5, EGTA; 20, HEPES (pH 7.2 with KOH). Bath solution contained the following, in millimolars: 145, NaCl; 5, KCl; 1, CaCl₂; 3, MgCl₂; 20, HEPES (pH 7.4 with NaOH). K_{2P,4.1} (TRAAK) currents were elicited by a 1 s ramp from −100 to +50 mV from a −80 mV holding potential. After stabilization of the basal current, AA and ML67-33 were perfused at 200 ml hr⁻¹ until the potentiation was stably reached.

Stretched activation of hK_{2P,4.1} (TRAAK), G124I, and W262S was performed on excised patches in the inside-out configuration. A −50 mm Hg pressure was applied to the patch through a High-Speed Pressure Clamp (HSPC-1, ALA Scientific Instruments) connected to the electrode suction port after recording the current at 0 mm Hg. Basal current was ≥ 500 pA. Pipette solution contained the following in millimolars: 150, NaCl; 5, KCl; 1, CaCl₂; 2, MgCl₂; 20, HEPES (pH 7.4 with NaOH). Bath solution contained the following in millimolars: 145, KCl; 3, MgCl₂; 5, EGTA; 20, HEPES (pH 7.2 with KOH) and was continuously perfused at 200 ml hr⁻¹ during the experiment. hK_{2P,4.1} (TRAAK) currents were elicited by a 1 s ramp from −150 to +50 mV from a −80 mV holding potential. Data were analyzed using Clampfit 9 and Origin 7.

Two-Electrode Voltage Clamp Electrophysiology

Two-electrode voltage clamp recordings were performed on deolficiulated stage V–VI Xenopus laevis oocytes 24–48 hr after microinjection with 1.2 ng cRNA. Surgical extraction of Xenopus oocytes was done under an IACUC-approved protocol. Oocytes were impaled with borosilicate recording micropipettes (0.3–3.0 MΩ resistance) backfilled with 3 M KCl. Recording solution (96 mM NaCl, 2 mM KCl, 1.8 mM CaCl₂, and 2.0 mM MgCl₂ buffered with 5 mM HEPES [pH 7.4]) was perfused at a rate of 3 ml min⁻¹. For pH₀ experiments, 5 mM HEPES was replaced by 10 mM TRIS (pH 9.0, 8.1) or 5 mM MES (pH 6.5, 5.9) as indicated in the text. For temperature experiments, recordings were performed by heating the SC-20 in-line heater/cooler combined with an LCS-1 liquid cooling system operated by the CL-100 bi-polar temperature controller (Warner Instruments). Temperature was monitored using a CL-100-controlled thermistor placed in the bath solution 1 mm upstream of the oocyte. For pH experiments, solutions were exchanged sequentially from pH 9.0 to pH 5.9, and recordings were performed 15 s after each new solution was applied, as described previously (Bagrantsiev et al., 2011). For temperature experiments, perfusate was warmed from 15°C to 35°C in 5°C increments, with recordings performed once temperature readings stabilized at the desired values. Currents were evoked from a −80 mV holding potential by a 100 ms step to 0 mV, a 100 ms return to −80 mV, followed by a 500 ms ramp from −150 mV to +50 mV. Data were acquired using a GeneClamp 500B amplifier (MDS Analytical Technologies) controlled by pClamp software (Molecular Devices), and digitized at 1 kHz using Digidata 1332A digitizer (MDS Analytical Technologies). Aggregate pH₀ data were fitted with a modified Hill equation: I = I_{max}t^{(f_{max}−f_{min})/(1+10^{(pH_{50}−pH_{H}+H)}}, where f_{max} and f_{min} are maximal and minimal current values, respectively, pH_{50} is a half-maximal effective pH₀ value, and H is the Hill coefficient.

ACCESSION NUMBERS

The Protein Data Bank accession numbers for coordinates and structure factors for G124I and W262S reported in this paper are 4RUE and 4RUF, respectively.
SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, and four movies and can be found with this article online at http://dx.doi.org/10.1016/j.neuron.2014.11.017.

AUTHOR CONTRIBUTIONS

M.L., C.A., P.M.R., and D.L.M. conceived the study and designed the experiments. M.L. purified and crystallized the proteins, collected diffraction data, and determined, refined, and analyzed the structures. C.A. and P.M.R. designed and performed functional experiments in HEK cells and Xenopus oocytes, respectively. K.A.C. expressed and purified the proteins. D.L.M. analyzed data and provided guidance and support throughout. M.L., C.A., P.M.R., and D.L.M. wrote the paper.

ACKNOWLEDGMENTS

We thank S. Brohawn and R. MacKinnon (Rockefeller University) for the K_{gtr}p.1 (TRAAK) plasmid; F. Findeisen for expert advice on structure solution and refinement; and S.N. Bagriantsev, J.M. Berger, K. Brejc, M. Grabe, J. Gross, L. Jan, J. Payandeh, and E. Reuveny for comments on the manuscript. This work was supported by NIH-NIMH grant R01-MH093603 to D.L.M.

REFERENCES

Supplemental Information

Transmembrane Helix Straightening and Buckling Underlies Activation of Mechanosensitive and Thermosensitive \(K_{2p}\) Channels

Marco Lolicato, Paul M. Riegelhaupt, Cristina Arrigoni, Kimberly A. Clark, and Daniel L. Minor, Jr.
Figure S1, Related to Figure 1 Structures of K$_{2p}$4.1 activating mutants A, 2Fo-Fc electron density (marine mesh) for a portion of the G124I Chain A M2 helix (marine). Select residues are indicated. Cartoons depict G124I (marine), K$_{2p}$4.1 (TRAAK)/Fab (grey) (Brohawn et al., 2013) and K$_{2p}$4.1 (TRAAK) (Brohawn et al., 2012) (yellow). B, and C, Structural comparison of the M4 and P1 regions of G124I (marine), W262S (firebrick), K$_{2p}$4.1 (TRAAK)/Fab (grey) (Brohawn et al., 2013) and K$_{2p}$4.1 (TRAAK) (Brohawn et al., 2012) (yellow). Sidechains of residues 124 and 262 are depicted as sticks and are labeled.
Figure S2, Related to Figure 1 K_{2p}4.1 (TRAAK) Residue by residue structure comparisons Ca RMSD plots comparing the indicated regions of A, G124I, Chains A and B, B, W262S, Chains A and B. C and D show comparisons of G124I Chain A with C, Chain A and D, Chain B from K_{2p}4.1 (TRAAK) (Brohawn et al., 2012) (yellow) K_{2p}4.1 (TRAAK) /Fab (grey) (Brohawn et al., 2013), and W262S (firebrick). Secondary structure elements are indicated as PH1 (pore helix 1), SF1 (selectivity filter 1), M2, M3, PH2 (pore helix 2), SF2 (selectivity filter 2) and M4. Shading indicates the buckled region of M2 and the portion of M4 C-terminal to the G238 bend.
Figure S3, Related to Figure 1 Crystal packing contributes to $K_{2p}4.1$ (TRAAK) structural asymmetry. Conformational differences between chain A and chain B with respect to crystal packing for A, $K_{2p}4.1$ (TRAAK) (Brohawn et al., 2012) (yellow) and B, $K_{2p}4.1$ (TRAAK)/Fab (grey) (Brohawn et al., 2013). In both cases the structure of G124I (marine) is shown for comparison. M4 helices of Chains A and B are indicated.
Figure S4, Related to Figure 3 Sequence comparisons of K_{2p} M4 and M2 helices

Sequence alignment of A, M4 and B, M2 helices of the indicated K_{2p}s. Secondary structure is indicated. Dashed lines and pale cartoon indicate region of M4 where helical structure is absent in G124I and W262S. Position of W262S and the conserved glycine are indicated. Red residues indicate mutants that affect gating (Bagriantsev et al., 2012; Bagriantsev et al., 2011) and the site of an activating mutation in the C-terminal tail of K_{2p.1} (TREK-1) (Honore et al., 2002). For M2, conserved glycines of the ‘GXG’ motif and M2/M3 interface residues (168, 172, and 176) are marked. In both alignments, shading indicates conserved residues.
Figure S5, Related to Figure 4, Comparison of M2 conformations in Chain A and Chain B for A, G124I (marine and slate), B, W262S (firebrick and raspberry), C, K_{zP}4.1 (TRAAK) (yellow and sand) (Brohawn et al., 2012), and D, K_{zP}4.1 (TRAAK)/Fab complex (Brohawn et al., 2013). In A-B M2 of Chain A from the K_{zP}4.1 (TRAAK)/Fab complex (grey) (Brohawn et al., 2013) is shown for reference.
Figure S6, Related to Figure 8 Location of residues implicated in general anesthetic and covalent chemical activation responses

Cytoplasmic view of a single subunit of K$_{2p}$4.1 (TRAAK) (grey) (Brohawn et al., 2013) and G124I (marine). Highlighted residues in K$_{2p}$4.1 (TRAAK) (white) and G124I (red) correspond to *Lymnea stagnalis* LyTASK (Andres-Enguix et al., 2007) and K$_{2p}$9.1 (TASK-3) (Andres-Enguix et al., 2007; Conway and Cotten, 2012) residues implicated in anesthetic responses and covalent activation at a Met\rightarrowCys mutant. K$_{2p}$4.1 (TRAAK) Ala198 corresponds to K$_{2p}$9.1 (TASK-3) Met159 and LyTASK L159. K$_{2p}$4.1 (TRAAK) Arg 194, Thr 278 and Ile 279 correspond to LyTASK S155, L241 and L242, respectively.
Supplementary Movie S1, Related to Figure 4 Conformational changes in a single $K_{2P}4.1$ (TRAAK) subunit

Single subunit morph between the resting and activated conformations of $K_{2P}4.1$ (TRAAK) based on the $K_{2P}4.1$ (TRAAK)/Fab complex (grey) (Brohawn et al., 2013) and G124I (marine) structures, respectively. The channel is depicted in cartoon rendering to represent the backbone structure. M4 length corresponds to that seen in the G124I structure. Color changes to yellow and firebrick represent conformations similar to the $K_{2P}4.1$ (TRAAK) (yellow) (Brohawn et al., 2012) and W262S (firebrick) structures respectively.

Supplementary Movie S2, Related to Figure 5 Conformational changes in $K_{2P}4.1$ (TRAAK)

Morph between the resting and activated conformations of $K_{2P}4.1$ (TRAAK) based on the $K_{2P}4.1$ (TRAAK)/Fab complex (grey) (Brohawn et al., 2013) and G124I (marine) structures, respectively. Structures contain two copies of chain A in which one has been superposed on the position of chain B and hence, are symmetric. The channel is depicted in cartoon rendering to represent the backbone structure. M4 length corresponds to that seen in the G124I structure. Color changes to yellow and firebrick represent conformations similar to the $K_{2P}4.1$ (TRAAK) (yellow) (Brohawn et al., 2012) and W262S (firebrick) structures respectively.

Supplementary Movie S3, Related to Figure 5 Surface rendered view of $K_{2P}4.1$ (TRAAK) conformational changes

Morph between the resting and activated conformations of $K_{2P}4.1$ (TRAAK) based on the $K_{2P}4.1$ (TRAAK)/Fab complex (Brohawn et al., 2013) and G124I structures, respectively. Movie S3 is identical to Movie S1 but depicts the surfaces. This depiction highlights the opening of the lateral door to the inner bilayer. The channel is depicted in surface rendering. Color changes to yellow and firebrick represent conformations similar to the $K_{2P}4.1$ (TRAAK) (yellow) (Brohawn et al., 2012) and W262S (firebrick) structures respectively.

Supplementary Movie S4, Related to Figure 8 Cytoplasmic view of $K_{2P}4.1$ (TRAAK) conformational changes

Cytoplasmic view of Movie S2.
Table S1, Related to Figure 1 K2P4.1 (TRAAK) structural comparisons

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca RMSD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>2.13Å</td>
<td>4.80Å</td>
<td>1.54 Å</td>
<td>4.50Å</td>
</tr>
<tr>
<td>ΔM2, Δ*M4</td>
<td>1.55Å</td>
<td>5.18 Å</td>
<td>0.95Å</td>
<td>5.05Å</td>
</tr>
<tr>
<td>ΔCAP</td>
<td>1.89 Å</td>
<td>2.20Å</td>
<td>1.59 Å</td>
<td>1.79Å</td>
</tr>
<tr>
<td>Channel Core (ΔCAP, ΔM2, ΔM4)</td>
<td>0.76 Å</td>
<td>1.29 Å</td>
<td>0.76 Å</td>
<td>1.00 Å</td>
</tr>
</tbody>
</table>

Definitions (RMSD calculated using the following channel elements of Chain A and Chain B)

- **Overall**
 - M1 to M4 (residues 28-96 and 116-284), loop between CAP and PH1 was removed (residues 97-115)
 - ΔM2, Δ*M4
 - M1 through CAP (residues 28-96), PH1 through common part of M2 (residues 116-160), and M3 through PH2 (residues 191-245)
 - ΔCAP
 - M1 (residues 28-56), PH1 through M4 (residues 110-284)
- **Channel core (ΔCAP, ΔM2, ΔM4)**

M1 (residues 28-56), PH1 through common part of M2 (residues 116-160), M3 through PH2 (residues 191-245) (the selectivity filter was included in the calculation).

For the non-domain-swapped K2P4.1 (TRAAK), residues 28-96 of chain A were compared to equivalent residues on chain B.
Supplementary References

