Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family

Zhou Chena,b, Sandra Zakrzewskaa,c, Holly S. Hajareb, Aurora Alvarez-Buyllia, Fayal Abderemane-Alia, Maximiliana Bogania,b, Dave Ramirezc, Lauren A. O’Connellb, J. Du Boisb, and Daniel L. Minord,e,f,g,h

Edited by Nieng Yan, Princeton University, Princeton, NJ; received June 12, 2022; accepted September 19, 2022

American bullfrog (Rana catesbeiana) saxiphilin (RcSxph) is a high-affinity “toxin sponge” protein thought to prevent intoxication by saxitoxin (STX), a lethal bis-guanidinium neurotoxin that causes paralytic shellfish poisoning (PSP) by blocking voltage-gated sodium channels (NaVs). How specific RcSxph interactions contribute to STX binding has not been defined and whether other organisms have similar proteins is unclear. Here, we use mutagenesis, ligand binding, and structural studies to define the energetic basis of Sxph:STX recognition. The resultant STX “recognition code” enabled engineering of RcSxph to improve its ability to rescue NaVs from STX and facilitated discovery of 10 new frog and toad Sxphs. Definition of the STX binding code and Sxph family expansion among diverse anurans separated by ~140 My of evolution provides a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and for developing novel proteins to sense or neutralize STX and related Ptx toxins.

Saxitoxin (STX), one of the most potent nonpeptidyl neurotoxins, blocks the bioelectrical signals in nerve and muscle required for life by inhibiting select voltage-gated sodium channel (NaVs) isoforms (1–3). Cyanobacteria and dinoflagellate species associated with oceanic red tides produce this bis-guanidinium small molecule and its congeners, whose accumulation in seafood can cause paralytic shellfish poisoning (PSP), a commercial fishing and public health hazard of growing importance due to climate change (1, 3–5). Its lethality has also earned STX the unusual distinction of being the only marine toxin declared a chemical weapon (1, 3). Select vertebrates, particularly frogs, resist STX poisoning (6–9), a property that is thought to rely on the ability of the soluble “toxin sponge” protein saxiphilin (Sxph) to sequester STX (8, 9). Recent structural studies (10) defined the molecular architecture of the American bullfrog [Rana (Lithobates) catesbeiana] Sxph (RcSxph) (8, 11–14) showing that this 91-kDa soluble, transferrin-related protein from frog heart and plasma has a single, high-affinity STX binding site on its C lobe. Remarkably, even though RcSxph and NaVs are unrelated, both engage STX through similar types of interactions (10). This structural convergence raises the possibility that determination of the factors that underlie the high-affinity Sxph:STX interaction could provide a generalizable molecular recognition code for STX that would enable the identification or engineering of STX binding sites in natural and designed proteins.

To characterize RcSxph:STX interactions in detail, we developed a suite of assays comprising thermofluor (TF) measurements of ligand-induced changes in RcSxph stability, fluorescence polarization (FP) binding to a fluorescein-labeled STX, and isothermal titration calorimetry (ITC). We paired these assays with a scanning mutagenesis strategy (15, 16) to dissect the energetic contributions of RcSxph STX binding pocket residues. These studies show that the core RcSxph STX recognition code comprises two “hot spot” triads. One engages the STX tricyclic bis-guanidinium core through a pair of carboxylate groups and a cation–π interaction (17) in a manner that underscores the convergent STX recognition strategies shared by RcSxph and NaVs (17–22). The second triad largely interacts with the C13 carbamate group of STX and is the site of interactions that can enhance STX binding affinity and the ability of RcSxph to act as a “toxin sponge” that can reverse the effects of STX inhibition of NaVs (8, 9).

Although Sxph-like STX binding activity has been reported in extracts from diverse organisms including arthropods (13), amphibians (11, 13, 23), fish (13), and reptiles (13), the molecular origins of this activity have remained obscure. Definition of the RcSxph STX recognition code enabled identification of 10 new Sxphs from diverse frogs and toads. This substantial enlargement of the Sxph family beyond RcSxph and the previously identified High Himalaya frog (Nanorana parkeri) Sxph (NpSxph) (10) reveals a varied STX binding pocket that surrounds a conserved core of “hot spot” interactions that can enhance STX binding affinity (17) in a manner that underscores the convergent STX recognition strategies shared by RcSxph and NaVs (17–22).

Significance

Saxitoxin (STX) is a lethal neurotoxin made by cyanobacteria and dinoflagellates associated with oceanic red tides. Its accumulation in seafood causes paralytic shellfish poisoning (PSP), a public health hazard that is increasing due to climate change. Bullfrog saxiphilin (RcSxph) is a soluble STX binding protein that acts as a ‘toxin sponge’ involved in toxin resistance. Studying RcSxph:STX interaction energetics defines a STX ‘recognition code’ that enabled discovery of ten Sxphs in frogs and toads separated by ~140 million years of evolution. These findings provide a molecular basis for understanding the roles of toxin sponge proteins in toxin resistance and should enable STX binding site identification in natural proteins and design of proteins to sense or neutralize STX and related toxins.
positions. Comparison of the new Sxph family members further identifies dramatic differences in the number of thryoglobulin (Thy1) domains inserted into the modified transferrin fold upon which the Sxph family is built. Biochemical characterization of NpSxph, Oophaga sylvatica Sxph (OsSxph) (24), Mantella aurantiaca Sxph (MaSxph), and Ranitomeya imitator Sxph (RiSxph), together with structural determination of NpSxph, alone and as STX complexes, shows that the different Sxphs share the capacity to form an affinity-STX complexes and that binding site reorganization (10) is a critical factor for tight STX association. Together, these studies establish an STX molecular recognition code that provides a template for understanding how diverse STX binding proteins engage the toxin and its congeners and uncover that Sxph family members are abundantly found in the most varied and widespread group of amphibians, the anurans. This knowledge and suite of diverse Sxphs, conserved among anuran families separated by at least 140 My of evolution (25), provide a starting point for defining the physiological roles of Sxph in toxin resistance (9, 24, 26), should facilitate identification or design of other STX binding proteins, and may enable the development of new biologics to detect or neutralize STX and related PSPs.

Results

Establishment of a Suite of Assays to Probe RsSxph Toxin-Binding Properties. To investigate the molecular details of the high-affinity RsSxph-STX interaction, we developed three assays to assess the effects of STX binding site mutations. A key criterion was to create assays that could be performed in parallel on many RsSxph mutants using minimal amounts of purified protein and toxin. To this end, we first tested whether we could detect STX binding using a TF assay (27, 28) in which STX binding to its receptor is determined by the apparent loss of the thermal shift (e.g., E540A and D794A). All mutations (e.g., I782A and D785N) as well as those that caused complete loss of the thermal shift (e.g., E540A and D794A). All mutations had minimal effects on protein stability (SI Appendix, Fig. S1B) and there was no evident correlation between Tm and ΔTm (SI Appendix, Fig. S1C). Hence, the varied ΔTm values indicate that each of the 12 positions contributes differently to STX binding.

Because ΔTm interpretation can be complex, especially in the case of a multidomain protein such as RsSxph, and may not necessarily indicate changes in ligand affinity (27, 28), we developed a second assay to measure the effects of mutations on RsSxph binding affinity. We synthesized a fluorescein-labeled STX derivative (F-STX) by functionalization of the pendant carbamate group with a six-carbon linker and fluorescein (29, 30) (Fig. 1C and SI Appendix, Fig. S2) and established an FP assay (31, 32) to measure toxin binding. FP measurements revealed a high-affinity interaction between F-STX and RsSxph (dissociation constant [Kd] = 7.4 nM ± 2.6) that closely agrees with prior radioligand assay measurements of RsSxph affinity for STX (~1 nM) (14). The similarity between the F-STX and STX Kd values is consistent with the expectation from the RsSxph:STX structure that STX carbamate derivatization should have a minimal effect on binding, as this element resides on the solvent-exposed side of the STX binding pocket (10). To investigate the F-STX interaction further, we soaked RsSxph crystals with F-STX and determined the structure of the RsSxph:F-STX complex at 2.65 Å resolution by X-ray crystallography (SI Appendix, Fig. S3A and Table S1). Inspection of the STX binding pocket revealed clear electron density for the F-STX bis-guanidinium core as well as weaker density that we could assign to the fluorescein heterocycle (SI Appendix, Fig. S3A), although the high B-factors of the linker and fluorescein indicate that these moieties are highly mobile (SI Appendix, Fig. S3B). Structural comparison with the RsSxph:STX complex (10) showed no changes in the core STX binding site and STX binding pocket residues (RMSDca = 0.279 Å) (SI Appendix, Fig. S3C). Together, these data demonstrate that both F-STX and STX bind to Sxph in the same manner and indicate that there are no substantial interactions with the fluorescein label.

FP measurement of the RsSxph alanine scan mutants uncovered binding affinity changes spanning a ~13,000-fold range that correspond to free energy perturbations (ΔΔG) of up to ~5.6 kcal·mol⁻¹ (Fig. 1D, SI Appendix, Fig. S4, and Table 1). The effects were diverse, encompassing enhanced affinity changes (Y558A Kd = 1.2 nM ± 0.3) and large disruptions (E540A Kd = 15.3 μM ± 4.1). As indicated by the TF data, each STX binding pocket residue contributes differently to STX recognition energetics. Comparison of the TF ΔTm and FP ΔΔG values shows a strong correlation between the two measurements (Fig. 1B). This concordance between ΔTm and ΔΔG indicates that the changes in unfolding free energies caused by protein mutation and changes in STX binding affinity do not incur large heat capacity or entropy changes relative to the wild-type protein (33, 34). Hence, ΔTm values provide an accurate estimate of the STX binding affinity differences.

To investigate the STX affinity changes further, we used ITC (Fig. 1F and SI Appendix, Table S2), a label-free method that reports directly on ligand association energetics (35), to examine the interaction of STX with RsSxph and six mutants having varied effects on binding (E540D, Y558I, Y558A, F561A, P727A, and D794E) (Figs. 1F and 2A and SI Appendix, Fig. S5 A–C and Table S2). Experiments with RsSxph confirm the 1:1 stoichiometry and high affinity of the RsSxph:STX interaction (Kd ~nanomolar) reported previously (8, 10, 14) and reveal a large, favorable binding enthalpy (ΔH = −16.1 ± 0.2 kcal·mol⁻¹) in line with previous radioligand binding studies (14). In almost all mutants, binding affinity loss correlated with a reduction in enthalpy, consistent with a loss of interactions (SI Appendix, Table S2). The one exception to this trend is E540D for which STX association yielded a binding enthalpy (ΔH = −16.3 ± 1.7 kcal·mol⁻¹) very similar to wild-type RsSxph that was offset by an approximately twofold unfavorable change in binding entropy. The ITC measurements were unable to measure the affinity enhancement for Y558A and Y558I accurately due to the fact that these mutants, as well as RsSxph, have Keq at the detection limit of direct titration methods (~1 nM) (35). Nevertheless,
Fig. 1. Alanine scan of RcSxph binding. (A and B) Exemplar TF assay results for (A) RcSxph in the presence of the indicated concentrations of STX (Left) and TTX (Right) and (B) select RcSxph mutants in the presence of STX. STX and TTX concentrations are 0 nM (black), 19.5 nM (blue), 625 nM (cyan), 5,000 nM (orange), and 20,000 nM (red). Gray dashed lines indicate ΔTm. (C) F-STX diagram. STX and fluorescein (F) moieties are highlighted in blue and yellow, respectively. (D) Exemplar FP binding curves and K_ds for RcSxph and the indicated mutants. (E) Comparison of RcSxph mutant ΔTm and ΔΔG values (line $y = 3.49 - 0.7523x$, $R^2 = 0.886$). (F) Exemplar isotherms for titration of 100 μM STX into 10 μM RcSxph, 100 μM STX into 10 μM RcSxph F561A, 100 μM STX into 10 μM RcSxph E540D, and 300 μM STX into 30 μM RcSxph D794E. K_d and ΔH values are indicated. (G) Comparison of ΔΔGTC for STX and ΔΔGF for F-STX for RcSxph and mutants. Purple box highlights region of good correlation. Orange box indicates region outside of the ITC dynamic range. (line shows $x = y$). Colors in B, D, and E correspond to classifications in Table 1.
ΔG_{ITC} from mutants having STX K_D within the ITC dynamic range ($K_D \sim$30 to 300 nM) showed an excellent agreement with ΔG_{FP} measurements made with F-STX (Fig. 1G). These data further validate the TF and FP assay trends and support the conclusion that RrSxph:F-STX binding interactions are very similar to the RrSxph:STX interactions. Together, these three assays (Fig. 1 E and G) provide a robust and versatile suite of options for characterizing STX:Sxph interactions.

Sxph STX binding code is focused on two sets of “hot spot” residues. To understand the structural code underlying STX binding, we classified the effects of the alanine mutations into six groups based on $\Delta \Delta G$ values (Fig. 2A and Table 1) and mapped these onto the RrSxph structure (Fig. 2B). This analysis identified a binding “hot spot” comprising three residues that directly contact the STX bis-guanidinium core (Glu540, Phe784, and Asp794) (10) and an additional site near the carbamate (Pro727) where alanine mutations caused substantial STX binding losses ($\Delta \Delta G$ \geq1 kcal-mol$^{-1}$). Conversely, we also identified a site (Tyr558) where alanine caused a notable enhancement of STX affinity ($\Delta \Delta G \leq$1 kcal-mol$^{-1}$). This analysis identified two residues, Tyr558 and Ile782, which stand out as sites where alanine substitutions enhanced STX affinity (Fig. 2A and Table 1). Altering side-chain length while preserving the negative charge at these sites also greatly diminished STX affinity but was not as problematic at Glu540 ($\Delta \Delta G = 1.54$ and 2.94 kcal-mol$^{-1}$ for E540D and D794E, respectively). To probe contacts with Phe784, which makes a cation–π interaction (17) with the STX five-membered guanidinium ring (10), we tested changes that preserved this interface (F784Y), maintained side-chain volume and hydrophobicity (F784L), and that mimicked substitutions (F784C and F784S) found in the analogous residue in STX-resistant Na$_{v}$1.7 (PDB ID:6J8G) (40). Residues that are energetically important for the STX interaction are shown in space filling. Na$_{v}$1.7 selectivity filter “DEKA” ring residues are shown (white). Italics indicate corresponding residue numbers for rat Na$_{v}$1.4 (18).

![Fig. 2. Energetic fingerprint of STX recognition by RrSxph. (A) $\Delta \Delta G$ comparisons for the indicated RrSxph STX binding pocket mutants relative to wild-type RrSxph. Colors indicate $\Delta \Delta G < -1$ kcal-mol$^{-1}$ (blue), $-1 \leq \Delta \Delta G < 0$ kcal-mol$^{-1}$ (light blue), $0 \leq \Delta \Delta G < 1$ kcal-mol$^{-1}$ (yellow), $1 \leq \Delta \Delta G < 2$ kcal-mol$^{-1}$ (orange), and $\Delta \Delta G \geq 2$ kcal-mol$^{-1}$ (red orange). (B) Energetic map of alanine scan mutations on STX binding to the RrSxph STX binding pocket (PDB ID:6G0F) (10). Second-shell sites are in italics. Colors are as in A. Structural interactions of STX with (C) RrSxph (PDB ID:6G0P) (10) and (D) human Na$_{v}$1.7 (PDB ID:6J8G) (40). Residues that are energetically important for the STX interaction are shown in space filling. Na$_{v}$1.7 selectivity filter “DEKA” ring residues are shown (white). Italics indicate corresponding residue numbers for rat Na$_{v}$1.4 (18).](https://doi.org/10.1073/pnas.2210114119)
second-shell site that buttresses Tyr558. Hence, we hypothesized that affinity enhancements observed in the Tyr558 and Ile782 mutants resulted from the reduction of Tyr558–STX clashes. In accord with this idea, Y558F had little effect on STX binding (ΔΔG ≤ –0.10 kcal mol⁻¹), whereas shortening the side chain but preserving its hydrophobic character, Y558I, enhanced binding as much as Y558A (ΔΔG = –1.07 and –1.00 kcal mol⁻¹, respectively). Conversely, increasing the side-chain volume at the buttressing position, I782F, a change expected to make it more difficult for Tyr558 to move out of the binding pocket, reduced STX binding affinity (ΔΔG = 0.46 kcal mol⁻¹). Combining the two affinity enhancing mutants, Y558A/I782A, yielded only a marginal increase in affinity in comparison to Y558A (ΔΔG = –1.07 and –1.00 kcal mol⁻¹, respectively) but was better than I782A alone (ΔΔG = –0.53 kcal mol⁻¹). This nonadditivity in binding energetics (36) is in line with the physical interaction of the STX bis-guanidinium core of the toxin. The second amino acid triads. One (Glu540, Phe784, and Asp794) engages the basic architecture and binding energetics appear to be conserved even though the overall protein structures presenting these elements are dramatically different.

Structures of enhanced-affinity Rsxph mutants. To investigate the structural underpinnings of the affinity enhancement caused by mutations at the Tyr558 site, we determined crystal structures of Rsxph-Y558A and Rsxph-Y558I alone (2.60-Å and 2.70-Å resolution, respectively) and as co-crystallized STX complexes (2.60 Å and 2.15 Å, respectively) (SI Appendix, Fig. S6 A-D and Table S1). Comparison of the apo- and STX-bound structures reveals little movement in the STX binding pocket upon ligand binding (RMSDcα = 0.209 Å and 0.308 Å comparing apo- and STX-bound Rsxph-Y558A and Rsxph-Y558I, respectively) (Fig. 3 A and B and Movies S1 and S2). In both, the largest conformational change is the rotation of Asp785 into the binding pocket to interact with the five-membered guanidinium ring of STX, as seen for Rsxph (Fig. 3 G) (10). By contrast, unlike in Rsxph, there is minimal movement of residue 558 and its supporting loop, indicating that both Y558A and Y558I eliminate the clash incurred by the Tyr558 side chain. Comparison with the Rsxph:STX complex also shows that the STX carbamate in both structures has moved into a pocket formed by the mutation at Tyr558 (RMSDcα = 0.279 Å and 0.327 Å comparing Rsxph:STX with Rsxph-Y558A:STX and Rsxph-Y558I:STX, respectively) (Fig. 3C). This structural change involves a repositioning of the carbamate carbon by 2 Å in the Rsxph-Y558I:STX complex relative to the Rsxph:STX complex. These findings are in line with the nearly equivalent toxin-binding affinities of Y558A and Y558I, as well as with the
idea that changes at the Tyr558 buttressing residue, Ile782, relieve the steric clash with STX. They also demonstrate that one strategy for increasing STX affinity is to engineer a highly organized binding pocket that requires minimal conformational changes to bind STX.

Sxph STX binding-affinity changes alter Na_v rescue from STX block. Rsxph acts as a “toxin sponge” that can reverse STX inhibition of Na_v for STX, we evaluated how STX-affinity-altering mutations affected Rsxph rescue of channels blocked by STX. As shown previously, titration of different Rsxph:STX ratios against Phyllobates terribilis Na_v1.4 (PTNa_v1.4), a Na_v having a concentration that inhibits response by 50% for STX (IC50) of 12.6 nM (9), completely reverses the effects of STX at ratios of 2:1 Rsxph:STX or greater (Fig. 4 A and F). Incorporation of mutations that affect STX affinity altered the ability of Rsxph to rescue Na_v5s and followed the binding assay trends. Mutants that increased STX affinity, Y558I and I782A, improved the ability of Rsxph to rescue PTNa_v1.4 (Effective Rescue Ratio50 [ERR50] = 0.81 ± 0.01, 0.87 ± 0.02, and 1.07 ± 0.02 for Y558I, I782A, and Rsxph, respectively), whereas mutations that compromised STX binding reduced [P727A, ERR50 >4] or eliminated (E540A) the ability of Rsxph to reverse the STX inhibition (Fig. 4 B–F). This strong correlation indicates that the “toxin sponge” property of Sxph (9) depends on the capacity of Sxph to sequester STX and adds further support to the idea that Sxph has a role in toxin resistance mechanisms (8, 9).

Expansion of the Sxph family. STX binding activity has been shown for many organisms, including arthropods, amphibians, fish, and reptiles (11, 13), suggesting that many organisms harbor Sxph-like proteins. Besides Rsxph, similar Sxphs have been identified in only two other frogs, the High Himalaya frog *N. parkeri* (10) and the little devil poison frog *O. sylvatica* (24). As a number of poison frogs exhibit resistance to STX poisoning (9), we asked whether the STX binding site “recognition code” could enable identification of Sxph homologs in other amphibians. To this end, we determined the sequences of 10 new Sxphs (Fig. 5 A and B and SI Appendix, Figs. S7 and S8). These include six Sxphs in two poison dart frog families (family Dendrobatidae: dyeing poison dart frog, *Dendrobates tinctorius*; little devil poison frog, *O. sylvatica*; mimic poison frog, *R. imitator*; gold dart frog, *P. terribilis*; phantasmal poison frog, *Epipedobates tricolor*; and brilliant-thighed poison frog, *Allobates femoralis* and family Mantellidae golden mantella, *M. aurantiaca*) and three Sxphs in toads (Caudate toad, *Bufo bufo*; Asian toad, *Bufo gargarizans*; and South American cane toad, *Rhinella marina*). The identification of the Osxph sequence confirms its prior identification by mass spectrometry (24) and the discovery of Rnsxph agrees with prior reports of Sxph-like STX binding activity in the cane toad (*R. marina*) (13, 23).

Sequence comparisons (SI Appendix, Figs. S7 and S8) show that all of the new Sxphs share the transferrin fold found in Rsxph comprising N and C lobes each having two subdomains (N1, N2 and C1, C2, respectively) (10, 12) and the signature “EFDD” motif (10) or a close variant in the C-lobe STX binding site (Fig. 5A). Similar to Rsxph, the new Sxphs also have amino acid differences relative to transferrin that should eliminate Fe3+ binding (10, 12, 37), as well as a number of protease inhibitor thyroglobulin domains (Thy1) inserted between the N1 and N2 N-lobe subdomains (10, 38) (Fig. 5A and SI Appendix, Fig. S7–S9). These Thy1 domain insertions range from two in Rsxph, Npxxph, and Msxph to three in the dendrobatid poison frog and cane toad Sxphs to 16 and 15 in toad Btxxph and Byxph, respectively (Fig. 5A and SI Appendix, Figs. S7–S9).

We used the STX recognition code defined by our studies as a template for investigating cross-species variation in the residues that contribute to STX binding (Fig. 5B). This analysis shows a conservation of residues that interact with the STX bis-guanidinium core (Glu540, Phe784, Asp785, Asp794, and Tyr795) and carbamate (Phe561). Surprisingly, five of the Sxphs (*D. tinctorius*, *R. imitator*, *A. femoralis*, *B. bufo*, and *B. gargarizans*) have an aspartate instead of a glutamate at the Glu540 position in Rsxph that contributes the most binding energy (Fig. 2A). The equivalent change in Rsxph, E540D, reduced STX affinity by ~100-fold (Table 1) and uniquely alters enthalpy and entropy binding parameters compared to other affinity-lowering mutations (SI Appendix, Table S2). Additionally, we identified variations at two sites for which mutations increase Rsxph STX binding, Tyrr558 and Ile782 (Figs. 2A and 4 C and E and Table 1). Npxxph and Msxph have an Ile at the Tyrr558 site, whereas eight of the new Sxphs have hydrophobic substitutions at the Ile782 position (Fig. 5B). The striking conservation of the Sxph scaffold and STX binding site indicate that this class of “toxin sponge” proteins is widespread among diverse anurans, while the amino acid variations in key positions (Glu540, Tyrr558, and Ile782) raise the possibility that the different Sxph homologs have varied STX affinity or selectivity for STX congeners.

Diverse Sxph family members have conserved STX binding properties. To explore the STX binding properties of this new set of Sxphs and to begin to understand whether changes in the binding site composition affect toxin affinity, we expressed and purified four representative variants. These included two Sxphs having STX binding-site sequences similar to Rsxph (Npxxph and Msxph) and two Sxphs bearing more diverse amino acid differences (Rtxxph and Osxph), including one displaying the E540D substitution (R8Sxph). This set also represents Sxphs...
Fig. 4. RcSxph mutants have differential effects on PtNaV1.4 rescue from STX block. (A–E) Exemplar two-electrode voltage-clamp recordings of PtNaV1.4 expressed in Xenopus oocytes in the presence of 100 nM STX and indicated [Sxph]:[STX] ratios for (A) RcSxph, (B) RcSxph E540A, (C) RcSxph Y558I, (D) RcSxph P727A, and (E) RcSxph I782A. (Inset) The stimulation protocol. (F) [Sxph]:[STX] dose–response curves for RcSxph (black open circles), RcSxph E540A (purple inverted triangles), RcSxph Y558I (orange triangles), RcSxph P727A (gold diamonds), and RcSxph I782A (blue squares) in the presence of 100 nM STX. Lines show fit to the Hill equation.
having either two Thy1 domains similar to Rsxph (NpSxph and MaSxph) or three Thy1 domains (OsSxph and RiSxph) (Fig. 5A). TF experiments showed STX-dependent ΔT_ms for all four Sxphs. By contrast, equivalent concentrations of TTX had no effect (Fig. 5C), indicating that, similar to RcSpxh (Fig. 1A) (8, 9), all four Sxphs bind STX but not TTX. Unlike the other Sxphs, the RiSxph melting curve showed two thermal transitions; however, only the first transition was sensitive to STX concentration (Fig. 5C). FP binding assays showed that all four Sxphs bound F-STX and revealed affinities stronger than Rsxph (Fig. 5D and Table 2). The enhanced affinity of NpSxph and MaSxph for STX relative to Rsxph is consistent with the presence of the Y558I variant (Fig. 5B). Importantly, the observation that Rsxph has a higher affinity for STX than Rsxph despite the presence of the E540D difference suggests that the other sequence variations in the Rsxph STX binding pocket compensate for this Glu\rightarrowAsp change at Glu540.

Fig. 5. Sxph family member properties. (A) Comparison of the human transferrin (TF) Fe$^{3+}$ ligand positions (UniProtKB: P02787), RcSxph STX binding motif residues (10), and number of Thy1 domains for Sxphs from R. castesbeiana (PDB ID:6O0D) (10), N. parkeri (NCBI: XP_018410833.1) (10), M. aurantiaca, D. tinctorius, O. sylvatica, R. imitator, P. terribilis, E. tricolor, A. femoralis, R. marinus, B. bufo (NCBI:XM_040427746.1), and B. garagarizans (NCBI:XP_044148290.1). TF Fe$^{3+}$ (orange) and carbonate (blue) ligands are indicated. Blue highlights indicate residue conservation. (B) Comparison of STX binding pocket for the indicated Sxphs. Numbers denote Rsxph positions. Colors indicate the alanine scan classes as in Fig. 3B. Conserved residues are highlighted. Asterix indicates second-shell sites. (C) Exemplar TF curves for NpSxph, OsSxph, OsSxph, and MaSxph in the presence of the indicated concentrations of STX (purple box) or TTX (green box). ΔT_m values are indicated. (D) Exemplar FP binding curves and K_ds for NpSxph (green), Rsxph (blue), OsSxph (orange), and MaSxph (purple). (E) Exemplar NpSxph I559Y TF curves in the presence of the indicated concentrations of STX (purple box) or TTX (green box) and FP binding (green). ΔT_m and K_d values are indicated. Error bars are SEM.
Because NpSxph has a higher affinity for STX than RsSxph (Figs. 1D and 5D and Table 2) and has an isoleucine at the Tyr558 site (Fig. 5B), we asked whether the NpSxph I559Y mutant that converts the NpSxph binding site to match RsSxph would lower STX affinity. TF measurements showed that NpSxph I559Y had a ∼1°C smaller ∆Tm than NpSxph (ΔTm = 3.2°C ± 0.3 versus 2.5°C ± 0.2 for NpSxph and NpSxph I559Y, respectively), indicative of a decreased binding affinity (Fig. 5C and E). This result was validated by FP (ΔΔG = −1.56 kcal mol⁻¹), yielding a result of similar magnitude to the RsSxph Y558I differences (Fig. 5E and Tables 1 and 2). ITC confirmed the high affinity of the interaction (SI Appendix, Fig. 5S D, E and F), but could not yield an explicit Kᵢ given its low nanomolar value (SI Appendix, Fig. 5SP). Nevertheless, these experiments validate the 1:1 stoichiometry of the NpSxph:STX interaction (SI Appendix, Table S2) and show that the I559Y change reduced the binding enthalpy, consistent with perturbation of NpSxph:STX interactions (∆H = −18.7 ± 0.2 vs. −16.8 ± 0.2 kcal mol⁻¹, NpSxph and NpSxph I559Y, respectively) (SI Appendix, Table S2). Taken together, these experiments establish the conserved nature of the STX binding pocket among diverse Sxph homologs and show that the STX recognition code derived from RsSxph studies (Fig. 5B) can identify key changes that influence toxin binding.

Structures of apo- and STX-bound NpSxph reveal a preorganized STX binding site. To compare STX binding modes among Sxph family members, we crystallized and determined the structure of NpSxph, alone and cocrySTALLized with STX. NpSxph and STX:NpSxph crystals diffracted X-rays to resolutions of 2.2 Å and 2.0 Å, respectively, and were solved by molecular replacement (Fig. 6A and SI Appendix, Fig. S10 A and B). As expected from the similarity to RsSxph, NpSxph is built on a transferrin fold (Fig. 6A) and has the same 21 disulfides found in RsSxph, as well as an additional 22nd disulfide in the Type 1A thyroglobulin domain of NpSxph Thy1-2. However, structural comparison of NpSxph and RsSxph reveals a number of unexpected large-scale domain rearrangements.

The NpSxph N lobe is displaced along the plane of the molecule by ∼30° and rotated around the central axis by a similar amount (SI Appendix, Fig. S10C). NpSxph N lobe and C lobe lack Fe³⁺ binding sites (Fig. 5A), and despite the NpSxph displacement relative to RsSxph adopt closed and open conformations, respectively, as in RsSxph (10) (SI Appendix, Fig. S10 D and E) (RMSD_Cα = 1.160 Å and 1.373 Å for NpSxph and RsSxph N and C lobes, respectively). Surprisingly, the two NpSxph Thy1 domains are in different positions than in RsSxph and appear to move as a unit by ∼90° with respect to the central transferrin scaffold (SI Appendix, Fig. S10F and Movie S5) and a translation of ∼30 Å of Thy1-2 (SI Appendix, Fig. S10G). Thy1-1 is displaced from a site over the N lobe in RsSxph to one in which it interacts with the NpSxph C-lobe C2 subdomain and Thy1-2 moves from between the N and C lobes in RsSxph where it interacts with the C1 subdomain, to a position in NpSxph where it interacts with both N-lobe subdomains. Consequently, the interaction between the C-lobe β-strand β7C1 and Thy1-2 β5 observed in RsSxph is absent in NpSxph. Despite these domain-scale differences, Thy1-1 and Thy1-2 are structurally similar to each other (RMSD_Cα = 1.056 Å) and to their RsSxph counterparts (SI Appendix, Fig. S10H) (RMSD_Cα = 1.107 Å and 0.837, respectively). Further, none of these large-scale changes impact the STX binding site, which is found on the C1 domain as in RsSxph (Fig. 5A).

Comparison of the apo- and STX-bound NpSxph structures shows that there are essentially no STX binding site conformational changes upon STX engagement, apart from the movement of Asp786 to interact with the STX five-membered guanidine ring (Fig. 6B and Movie S4). This conformational change is shared with RsSxph (10) and appears to be a common element of Sxph binding to STX. The movements of Tyr558 and its loop away from the STX binding site observed in RsSxph (10) are largely absent in NpSxph for the Tyr558 equivalent position, Ile559, and its supporting loop. Hence, the NpSxph STX binding site is better-organized to accommodate STX (Fig. 6B), similar to RsSxph Y558I (Fig. 3B). We also noted an electron density in the apo-NpSxph STX binding site that we assigned as a PEG400 molecule from the crystallization solution (SI Appendix, Fig. S10A). This density occupies a site different from STX and is not present in the STX-bound complex (SI Appendix, Fig. S10B). Its presence suggests that other molecules may be able to bind the STX binding pocket. Similar to RsSxph, the NpSxph STX binding site is very electronegative (SI Appendix, Fig. S11), consistent with the strong conservation of the E540 and D794 positions (Fig. 5A and B) that are the most energetically important and coordinate the positively charged STX bis-guanidinium core (Fig. 2A and Table 1).

We also determined the structure of an NpSxph:F-STX complex at 2.2 Å resolution (SI Appendix, Table S1). This structure shows no density for the fluorescein moiety and has an identical STX pose to the NpSxph:STX complex (SI Appendix, Fig. S12). These data provide further evidence that fluorescein does not interact with Sxph (cf. SI Appendix, Fig. S3) even though it is tethered to the STX binding pocket and support the idea that the FP assay faithfully reports on Sxph:STX interactions. Comparison of the NpSxph and RsSxph STX poses shows essentially identical interactions with the tricyclic bis-guanidinium core and reveals that the carbamate is able to occupy the pocket opened by the Y=I variant (Fig. 6C), as observed in RsSxph Y558I (Fig. 3B). This change, together with the more rigid nature of the NpSxph STX binding pocket, likely contributes to the higher affinity of NpSxph for STX relative to RsSxph (Table 1). Taken together, the various structures of Sxph:STX complexes show how subtle changes, particularly at the Tyr558 position, can influence STX binding and underscore that knowledge of the STX binding code can be used to tune the STX binding properties of different Sxphs.

Discussion

Our biochemical and structural characterization of a set of RsSxph mutants and Sxphs from diverse anurans reveals a conserved STX recognition code centered around six amino acid residues comprising two triads. One triad engages the STX...
bis-guanidinium core using carboxylate groups that coordinate each ring (Rsxph Glu540 and Asp794) and an aromatic residue that makes a cation–π interaction (Rsxph Phe784) with the STX concave face. This recognition motif is shared with NaVs, the primary target of STX in PSP (18, 39, 40) (Fig. 2C and D), and showcases a remarkably convergent STX recognition strategy for the tricyclic, bis-guandinium STX core. The second amino acid triad (Rsxph residues Tyr558, Phe561, and Pro727) largely interacts with the carbamate moiety and contains a site, Tyr558, and its supporting residue, Ile782, where amino acid changes, including those found in some anuran Sxphs (Fig. 5), enhance STX binding. Structural studies of Rsxph mutants and the High Himalaya frog NpSxph show that STX-affinity-enhancing substitutions in this area of the binding pocket act by reducing the degree of conformational change associated with STX binding (Figs. 3 and 6 C and D). These findings reveal one strategy for creating high-affinity STX binding sites. Importantly, enhancing the affinity of Sxph for STX through changes at either residue increases the capacity of Rsxph to rescue NaVs from STX block (Fig. 4), demonstrating that an understanding of the STX recognition code enables rational modification of Sxph binding properties. Thus, exploiting the information in the STX recognition code defined here should enable design of Sxphs as STX sensors or agents for treating STX poisoning.

Although STX binding activity has been reported in a variety of diverse invertebrates (13) and vertebrates (13, 23), only two types of STX binding proteins have been identified and validated, frog Sxphs (8, 9) and the pufferfish STX and TTX binding proteins (41, 42). Our discovery of a set of 10 new Sxphs that bind STX with high affinity (Fig. 5 and SI Appendix, Figs. S7 and S8) that share a conserved STX binding site represents a substantial expansion of the Sxph family and reveals natural variation in the residues that are important for STX binding (Fig. 5B). Most notably, E540D, a change that reduces STX binding in Rsxph by ~14-fold, occurs in five of the newly identified Sxphs. Nevertheless, functional studies show that Rsxph, which bears an Asp at this site, binds STX more strongly than Rsxph (Table 2).

Hence, the natural variations at other STX binding pocket residues must provide compensatory interactions to maintain a high STX binding affinity. Understanding how such variations impact STX engagement or influence the capacity of these proteins to discriminate among STX congeners (13) remain important unanswered questions. The striking abundance of Sxphs in diverse amphibians, representing lineages separated by ~140 My (25) and that are not known to carry STX, raises intriguing questions.
regarding the selective pressures that have caused these disparate amphibians to maintain this STX binding protein and its capacity to sequester this lethal toxin.

Besides the conserved STX binding site, all of the amphibian Sxphs possess a set of Thy1 domains similar to those in Rcsxph that have been shown to act as protease inhibitors (38). Comparison of anuran Sxphs shows that these domains are a common feature of the Sxph family and occur in strikingly varied numbers, comprising two or three in most Sxphs but having a remarkable expansion to 15 to 16 in some toad Sxphs (Fig. S5 A and SI Appendix, Fig. S7–S9). Structural comparisons between Rcsxph and Npsxph, representing the class that has two Thy1 domains (Fig. S5A), show that these domains can adopt different positions with respect to the shared, modified transferrin core (SI Appendix, Fig. S10F). Whether the Sxph Thy1 domains and their varied numbers are important for Sxph-mediated toxin resistance mechanisms (8, 9) or serve some other function remains unknown. Our definition of the STX STX binding code, which provides a guide for deciphering variation in the Sxph STX binding site (Fig. 5B), and discovery of high variability in Thy1 repeats among anuran Sxphs constitutes a template for identifying other Sxphs within this widespread and diverse family of amphibians.

STX interacts with a variety of target proteins including select Na+ isoforms (43), other channels (44, 45), diverse soluble STX binding proteins (8, 10, 41, 42, 46, 47), and some enzymes (3, 48, 49). The identification of the Sxph STX recognition code together with the substantial expansion of the Sxph family provides a foundation for developing a deeper understanding of the factors that enable proteins to bind STX. Exploration of such factors should be facilitated by the assays established here that allow Sxph:STX interactions to be probed using a range of sample quantities (TF: 25 μg Sxph, 600 ng STX; FP: 3 μg Sxph, 1 ng F-STX; ITC: 300 μg Sxph, 5 μg STX) and that should be adaptable to other types of STX targets. In cases of limited samples, such as difficult to obtain STX congeners, the excellent agreement among the assays should provide a reliable basis for interpretation of Sxph binding properties. Our delineation of the Sxph STX binding code and discovery of numerous Sxph family homologs among diverse amphibians set a broad framework for understanding the lethal effects of this potent neurotoxin and “toxin sponge” STX resistance mechanisms (8, 9). This knowledge may enable the design of novel PSP toxin sensors and agents that could mitigate STX intoxication.

Materials and Methods

R. catesbeiana Sxph (Rcsxph), N. p. karenki Sxph (Npsxph), M. aurantiaca Sxph (MaSxph), O. syrtica Sxph (OsSxph), and R. iritator Sxph (Risxph), and mutants were expressed and purified using a previously described Rcsxph baculovirus expression system (10). TF assays for STX and TTX binding were developed as outlined in ref. 27. FP assays were performed as described (50). Structure determination was done following previously described methods for Rcsxph (10). Two-electrode voltage clamp experiments evaluating Rcsxph rescue of Na+ from STX block were done as previously described (9). Details on cloning, expression, purification, binding assays, electrophysiology, structure determination, and F-STX synthesis can be found in SI Appendix.

Data, Materials, and Software Availability. Sequences of A/Sxph (OP265195), D/Sxph (OP265194), E/Sxph (OP265196), Ma/Sxph (OP265197), Os/Sxph (OP311630), Ps/Sxph (OP267560), Ri/Sxph (OP265193), and Rm/Sxph (OP267561) have been deposited and are available from the National Center for Biotechnology Information GenBank. Coordinates and structure factors and for Rcsxph Y558A (BD6P) (51), Rcsxph Y558A:STX (BD6S) (52), Rcsxph Y558I:STX (BD6Q) (53), Rcsxph Y558I:STX-BD6U (54), Rcsxph F-STX (BD6U) (55), Npsxph BD6G (BD6G) (56), Npsxph F-STX (BD6M) (57), and Npsxph F-STX (BD6O) (58) have been deposited in the RCSB Protein Data Bank.

Acknowledgments. We thank Z. Wong and T.-J. Yen for technical help and K. Brej and J. Gross for comments on the manuscript. This work was supported by grants Department of Defense (DoD) HDTRA-1-19-1-0040 and HDTRA-1-21-1-10011 and University of California, San Francisco Program for Breakthrough Biomedical Research, which is partially funded by the Sandler Foundation, to D.L.M., NSF-1822025 to L.A.O., NIH-NIGMS R01-GM117263-05 to J.D.B., an American Heart Association postdoctoral fellowship to F.A.A., an NSF GRFP (DGE-1656518) and HHMI Gilliam Fellowship (GT13330) to A.A.-B., and a DoD National Defense Science and Engineering Graduate (NDSEG) Fellowship to H.S.H. H.S.H. is a Center for Molecular Analysis and Design Fellow at Stanford University.

Author affiliations: *Cardiovascular Research Institute, University of California, San Francisco, CA 94158; †Department of Chemistry, Stanford University, Stanford, CA 94305; ‡Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158; §Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158; §Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158; ‡Department of Molecular Biology and Integrated Biomaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ¶Department of Molecular and Cellular Pharmacology, University of California, San Francisco, CA 94158.

The authors declare no competing interests.

Competing interest statement: J.D.B. is a cofounder and holds equity shares in SiteOne Therapeutics, Inc., a startup company I helped in developing, sub-type-selective modulators of sodium channels. The other authors declare no competing interests.

51. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6P. Deposited 6 June 2022.*

52. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6F. Deposited 6 June 2022.*

53. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6G. Deposited 6 June 2022.*

54. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6H. Deposited 6 June 2022.*

55. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6I. Deposited 6 June 2022.*

56. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6J. Deposited 6 June 2022.*

57. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6K. Deposited 6 June 2022.*

58. Z. Chen et al., Definition of a saxitoxin (STX) binding code enables discovery and characterization of the anuran saxiphilin family. *PDB. https://www.rcsb.org/structure/unreleased/B0D6L. Deposited 6 June 2022.*