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ABSTRACT The difficulty in growing crystals for x-ray diffraction analysis has hindered the determination of membrane protein
structures. However, this is changing with the advent of a new method for growing high quality membrane protein crystals from
the lipidic cubic phase. Although successful, the mechanism underlying this method has remained unclear. Here, we present
a theoretical analysis of the process. We show that it is energetically favorable for proteins embedded in the highly curved cubic
phase to cluster together in flattened regions of the membrane. This stabilizes the lamellar phase, permitting its outgrowth from
the cubic phase. A kinetic barrier-crossing model is developed to determine the free energy barrier to crystallization from the
time-dependent growth of protein clusters. Determining the values of key parameters provides both a rational basis for
optimizing the experimental procedure for membrane proteins that have not yet been crystallized and insight into the analogous
cubic to lamellar transitions in cells. We also discuss the implications of this mechanism for protein sorting at the exit sites of the
Golgi and endoplasmic reticulum and the general stabilization of membrane structures.

INTRODUCTION

The in cubo method of growing membrane protein crystals

from the cubic phase has produced x-ray diffraction quality

crystals of bacteriorhodopsin (bR), halorhodopsin, and

sensory rhodopsin II (Belrhali et al., 1999; Kolbe et al.,

2000; Luecke et al., 2001; Royant et al., 2001) in a manner that

appears to be generally applicable to all membrane proteins

(Chiu et al., 2000). For bR the process is understood on

a phenomenological level: First, a Pn3m-type cubic phase is

formed with the matrix lipid monoolein (MO) in a way that

membrane proteins are initially distributed throughout the

cubic phase. Next, the system is exposed to salt that

osmotically draws water from the interior compartment of

the cubic membrane phase. This causes the edge length, or

lattice parameter, of the unit cell to shrink by;15% (Nollert et

al., 2001). In the absence of membrane proteins, such a

shrinkage has no effect on the cubic structure of the

membrane. However, when proteins are present, they begin

to cluster together and locally flatten regions of the cubic

phase into lamellar stacks, eventually forming arrays large

enough for x-ray analysis (Nollert et al., 2001). The salt con-

centration is crucial to forming crystals, because counterions

mask electrostatics in the close-packed crystal; however, the

dehydration of the cubic phase can be carried out at salt con-

centrations of 100 mM–400 mM. This implies that the major

crystallization-inducing factor is the change in membrane

structure and not changes in counterion concentration.

The precise relationship between the lattice parameter and

the cubic phase geometry can be understood using as a model

the D minimal surface (DMS), a mathematical surface that

closely approximates the neutral surface of the Pn3m cubic

phase (Scriven, 1976). The DMS is a closed triply periodic

surface that divides space into two distinct multiply

connected regions (Fig. 1, A and B). Minimal surfaces are

characterized by negative Gaussian curvature and zero mean

curvature, so that every small piece of the surface is saddle

shaped. It is exactly these saddle-shaped curvatures that give

rise to membrane-protein interactions, inasmuch as saddle

splay exposes the hydrophobic midsection of membrane

proteins, as illustrated in Fig. 1 C. The membrane de-

formation needed to cover these exposed patches requires an

elastic work proportional to the preexisting Gaussian

curvature (Kim et al., 1998).

To minimize the elastic energy of deformation, proteins in

the Pn3m cubic phase will tend to aggregate at the four

‘‘monkey saddle’’ loci in each cell (shown in Fig. 1 D) where

the Gaussian curvature is minimum. Because the size of

these loci is comparable to the size of the proteins, the in-

plane aggregation of proteins will flatten these regions,

making them more energetically attractive for further protein

aggregation. Thus, judging from experiment, protein aggre-

gation foments the growth of lamellar regions devoid of

Gaussian curvature that are interconnected by tubular

regions, the latter of which are the residues of the original

connections between unit cells of the cubic phase. As the

lamellar stack regions grow, a transition zone separates them

from the surrounding bulk cubic phase. Direct evidence of

this distortion zone can be seen from cross-polarized light

experiments that reveal a ‘‘halo’’ region around crystals (Fig.

2). This noncubic transition structure has some mean

curvature, and a concomitant elastic energy cost associated
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with it. Under crystallization conditions in the absence of

proteins, the lamellar phase is transiently observed but never

stable. As the lattice parameter decreases, these transients

occur more frequently (Caffrey, 2000).

Standard crystallization experiments occur in liquid

solvent; in the cubic phase method the membrane plays the

role of the solvent. Despite this difference, all crystallization

processes share a fundamental common feature. Nucleation

conditions arise when the growth of the crystalline phase

acquires a favorable bulk energy and an unfavorable surface

energy. We suggest that a substantial component of the

favorable bulk energy arises due to the elastic strain relieved

as proteins enter the flattened regions of the crystal, whereas

the distortion zones surrounding the crystals give rise to an

effective surface tension that opposes aggregation. These

energies can be computed from the geometry of the cubic

phase and characteristics of the protein. Additionally, we

develop a general nucleation kinetic scheme to interpret

crystallization experiments and to extract information such

as free energy barriers and critical cluster sizes. These

methods complement each other and present a consistent

picture of in cubo membrane protein crystallization.

In the ensuing sections we quantify the qualitative

scenario outlined above. In the Discussion, we apply the

insights gained from studying the in vivo growth of crystals

to discuss how the shapes and curvatures of physiologically

relevant membranes might induce the aggregation of

membrane proteins. The preponderance of highly curved

surfaces in the cell is reviewed and the connection with

protein sorting is addressed within the context of our theory

of membrane-protein interactions.

A MODEL FOR IN CUBO MEMBRANE
PROTEIN CRYSTALLIZATION

Membrane-protein energetics in curved places

We model proteins as rigid bodies that impose clamped boundary conditions

on the surrounding membrane neutral surface (Harroun et al., 1999; Kim

FIGURE 1 Surface plot and curvature of the

DMS. (A) Stereo pair showing a unit cell of the

DMS, which underlies the geometry of the

Pn3m lipidic cubic phase (Brakke, 1992). The

extended phase iterates these ‘‘tubular units’’.

Stars mark the centers of monkey saddles where

the curvature is a minimum (see D). (B) View

of two adjacent monkey saddles. The arrow

indicates the path that proteins traverse in

passing between monkey saddles. (C) Cartoon

of a rigid cylindrical protein embedded in

a curved lipid bilayer (left side). If the

membrane does not deform from its minimal

surface state, undulations arise along the pro-

tein-bilayer contact curve. This creates mis-

matches between the hydrophobic midsections

of the protein and the membrane (right side).

This is energetically unfavorable, and conse-

quently the membrane distorts to cover up the

exposed hydrophobic patches, introducing

mean curvature into the membrane surface.

(D) The monkey saddle around one of the four

sites of minimum Gaussian curvature. See Appendix A for how this is drawn. Level curves of constant Gaussian curvature are represented on the surface for

a lattice constant of a¼ 93.3 Å (�36 (blue), �16 (yellow), 0 (center) 3 10�4 Å�2). When proteins move away from these minima, the elastic energy increases

several kBT. This effectively limits the configuration space of the proteins in the bulk cubic phase, and permits the use of a lattice model for nucleation. Axes

are in Ångströms.

FIGURE 2 Membrane distortion zone around protein crystals. (A) Protein

crystals embedded in the cubic phase viewed with cross-polarized light. The

crystals are a deep blue and are surrounded by a hazy blue birefringent halo.

Blue birefringence is indicative of a nonisotropic, possibly lamellar, lipid

phase. Away from this zone the lack of birefringence is characteristic of

a bulk cubic phase. (B) Cartoon representing the disturbance layer in A. The

Pn3m cubic phase is thermodynamically stable for MO under the

experimental conditions, whereas a lamellar phase is favored by the proteins

(see Fig. 3) and the membrane lipids that form the lamellar stacks of the

crystal (Landau and Rosenbusch, 1996). The connectedness between the

bulk cubic phase and the growing lamellar phase allows proteins to diffuse

into the crystal. However, this connection region composed of MO lipids is

necessarily a higher energy configuration than the D cubic phase. The

energy cost of creating this zone gives rise to an energy barrier to protein

aggregation that is treated as an effective surface tension (see Eq. 3).
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et al., 1998; Nielsen et al., 1998; Weikl et al., 1998). The far boundary

conditions are determined by matching the solution of the model equations

to the DMS. Thus, in the absence of proteins, solutions give rise to the

unperturbed surface. This imposes constraints on the height and angle of the

neutral surface along the protein contact curve. Membrane protein crystals

grown in cubo are nearly cylindrical in shape (Chiu et al., 2000). This

implies that the protein-bilayer contact boundary forms a circle, and that the

membrane locally forms a plane around the protein. The curvature energy of

the bilayer is given by the standard Helfrich model (Helfrich, 1973):

E ¼ 2k

ð
H2dA; (1)

where the integral is over the neutral surface, here represented by the DMS.H

is the local mean curvature of the membrane, and k is the bilayer elastic

modulus. The Gauss-Bonnet theorem from differential geometry states that

the surface integral of the Gaussian curvature remains constant under

deformations that do not change the topology. Inasmuch as the number of

proteins, and thus the number of boundaries in the model surface, is constant,

the Gaussian curvature term need not be considered in Eq. 1 (Kim et al., 1998).

The monolayer bending modulus is 2.8–5.0 kBT leading to bilayer values in

the range 5.6–10.0 kBT (Chung and Caffrey, 1994; Vacklin et al., 2000).

There are two positions for proteins in the membrane whose energies

must be calculated: 1), the center of the monkey saddle where the curvature

is a minimum, and 2), the horse saddle that must be traversed by a protein

diffusing from one monkey saddle to the next (Fig. 1). In Appendix A, it is

shown how the structure of the unperturbed DMS was determined using

level set approximations, and we formulate and solve the appropriate

biharmonic boundary value problem that arises from the Helfrich model.

This determines the membrane bending energy as a function of the lattice

parameter, eelas.(a).

The formation of crystals reduces the system’s configurational degrees of

freedom, hence there is a significant entropic barrier to their creation. Two

aspects of crystallizing from a membrane reduce this entropic barrier, as

compared to solution methods: 1), the membrane removes one translational

degree of freedom and two rotational degrees of freedom from the protein,

and 2), the geometry of the cubic phase further restricts the initial phase

space by confining proteins to the monkey saddle regions. As shown in the

Results section, the energy cost associated with proteins at positions other

than the monkey saddle is large; therefore, these positions have a small

associated occupancy. This makes the construction of a lattice model

practical. Thus, we posit that N proteins are free to occupy m[N binding

sites represented by the monkey saddles. Both of these numbers, N ; 9 3

1014 and m ; 52�N, are accessible from the experimental preparations

(Nollert et al., 2001). As proteins begin to aggregate into clusters of size k,

the total configurations can be explicitly counted leading to the familiar

expression for the entropy cost of adding single proteins to the cluster (see

Appendix B): Ds ¼ kBT�log(1/r1). In the thermodynamic limit, rT ¼ N/m

;1/52 is the total protein density, and r1 is the monomer density. From this

model the chemical potential driving the growth of crystals is

uða; r1Þ ¼ eelas:ðaÞ|fflfflffl{zfflfflffl}
Elastic

� kBT log
1

r1

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Entropic

þ eelec:|{z}
Electrostatic

; (2)

where a lattice parameter independent electrostatic term, eelec., has been

included. At the beginning of an experiment, the total protein density is

assumed to be in monomer form; thus, the initial entropic component of the

chemical potential is kBT log(1/r1) ; �4 kBT.

Nucleation kinetics

The analysis of macroscopic crystal growth can be used to reveal additional

information regarding the microscopic energies underlying the in cubo

crystallization process. For small cluster sizes, surface energy costs make the

FIGURE 3 Protein energetics in the Pn3m cubic phase. (A) Computed

deformation field of the monkey saddle region with a single inclusion in the

bulk Pn3m cubic phase. The surface color (red and blue) represents the

induced mean curvature radiating outward from the inclusion. (B) Binding

energy for adding a single bR-sized protein to a growing lamellar crystal as

a function of the lattice parameter. The energy is plotted using an upper and

a lower bilayer bending modulus determined from experimentally measured

monolayer bending moduli for the monoolein system. The monolayer values

are km ¼ 2.8 kBT (Vacklin et al., 2000), corresponding to the red curve, and

km ¼ 5.0 kBT (Chung and Caffrey, 1994), corresponding to the blue curve.

These curves are plotted with bilayer bending moduli twice the recorded

monolayer values. This assumes no interdigitation between the monolayer

leaflets and is likely an underestimate of the true bilayer bending modulus.

The elastic energy increases sharply at smaller lattice parameters, which

drives the formation of crystals. (C) The energy barrier for crossing from one

minimum energy site to the next is plotted as a function of the lattice

parameter. The bilayer bending modulus corresponding to Vacklin et al.’s

monolayer value was used (Vacklin et al., 2000). This barrier to diffusion

slows the movement of proteins in the cubic phase.

856 Grabe et al.

Biophysical Journal 84(2) 854–868



growth of crystallites energetically unfavorable; however, crystals sponta-

neously grow once they reach a critical cluster size, K. The overall rate of

crystal formation depends exponentially on the height of this barrier at K.

Calculating this barrier for ideal hard spheres is possible but computationally

intensive (Auer and Frenkel, 2001), and the energy landscape of the in cubo

system is sufficiently complicated so as to further hinder such calculations.

Therefore, we resort to an analysis of experimental bR crystallization

kinetics to extract this energy. The results of this analysis aid the

generalization of the in cubo method to the crystallization of other

membrane proteins.

The total number and size of clusters formed during a crystallization

experiment are readily measured. However, due to monomer depletion,

extracting the height of the nucleation barrier from this information is not

trivial because the height dramatically changes over the time course of the

experiment. To address this issue, we begin with the discrete form of the

standard model for the free energy of a crystal of size k:

gk ¼
3

2
sðaÞk2=3|fflfflfflfflfflffl{zfflfflfflfflfflffl}

unfavorable surface term

� uða; r1Þk|fflfflfflfflffl{zfflfflfflfflffl}
favorable bulk term

; (3)

where u(a, r1) can be computed from the model, Eq. 2. The surface tension

is obtained by fitting experimental data as described below. The largest

cluster energy in Eq. 3, denoted by gK, is the activation barrier in a nucleation

reaction: (k�1 cluster) þ monomer $ (k cluster). The kinetics of this

process are described by a system of ordinary differential equations

determining the time evolution of the cluster densities, where the fluxes

depend on the cluster densities according to:

@rk

@t
¼ jk�1 � jk

jk ¼ ckrlrk � dkrkþ1:

(4)

Here, the ratio of the creation, ck, and destruction, dk, coefficients is

determined via the principle of detailed balance using the relative cluster

energies, Eq. 3. The value of dk is determined through correspondence with

macroscopic crystallization as shown in Appendix C.

The crystallization process advances through three phases. Initially the

nucleation of crystals proceeds slowly as crystallites coalesce and break up,

only rarely crossing the large energy barrier. During this nucleation phase,

the monomer concentration remains nearly constant. The first crystals that

exceed the critical cluster size become the dominant consumers of the

monomer concentration. Their growth depletes the monomers, which in turn

decreases the chemical potential and further raises the activation energy

barrier. The nucleation phase then ends with the large crystals continuing

their supercritical growth, with k � K. Eventually the depletion of

monomer grows so large that the critical cluster size becomes comparable to

the size of the crystals. This signals the end of the supercritical growth phase

and the beginning of the coarsening phase described by traditional Lifshitz-

Slezov theory (Lifshitz and Slezov, 1961).

Rather than solve the large set of coupled, stiff differential equations in

Eq. 4, we use a novel asymptotic analysis. Traditional asymptotics scales the

variables to obtain reduced equations as limits of scaled equations. Analysis

of this reduction is carried out in Appendix E, and the desired relationship

between microscopic energies and crystal size is presented in the Results

section. Slezov and co-workers (1996) have carried out a similar calculation

starting from the same physical assumptions; however, their model for the

growth of large crystals corresponds to a different macroscopic phenomenon.

RESULTS

Elastostatics drives crystal growth

Proteins embedded in the cubic phase induce strain in the

surrounding bilayer, which is only relieved by diffusion into

the flattened lamellar region near a crystal. We have

computed the bending energy associated with a cylindrical

protein of the size of a bR molecule located at the center of

a monkey saddle. As the lattice parameter decreases, the

energy cost of proteins at these sites increases 5–10 kBT,

depending on the value of the experimentally measured

bending modulus (Fig. 3 B). The compatible boundary

conditions ensure that there is no curvature energy associated

with proteins in flat bilayers, so that the curve in Fig. 3 B is

exactly the elastic energy component of the chemical

potential, eelas.(a). As shown in Appendix A, eelas. scales as

the fourth power of the protein radius: eelas. ;R4 . Therefore,

large proteins favor the formation of lamellar stacks much

more than smaller ones. For instance, a protein with four

membrane spanning helices, or a diameter just larger than

half that of bR, will have an elastic driving force of ;0.3–0.6

kBT at a ¼ 93.3 Å. This poses a problem for crystallizing

small proteins and generally limits the broad-based applica-

bility of the in cubo method, although in particular the use of

MO-based cubic phases is limited to membrane proteins with

five or more transmembrane helices.

As proteins diffuse through the cubic phase, they

encounter horse saddles of high Gaussian curvature (Fig.

1 B). These regions do not play a role in the free energy

difference between the dilute and crystal phases, but they

are important for the kinetics of nucleation inasmuch as the

curvatures present a local energy barrier to protein motion.

Applying our analysis to proteins residing at the horse

saddles, the elastic energy cost at these intermediate

positions was computed. The relevant barrier crossing

energy, u(a), in Fig. 3 C is the energy difference between

proteins residing at the horse saddle and the monkey

saddle. The net diffusion coefficient is obtained by

multiplying the flat bilayer value by an Arrhenius factor

corresponding to the Kramers jump rate for moving from

monkey saddle to monkey saddle: D(a) ¼ D0exp(�u(a)/

kBT). In Appendix F, we estimate the flat bilayer diffusion

coefficient for a protein the size of bR as D0 ; 3.3 mm2/s,

using the MO bilayer viscosity measured by Tsapis et al.

(2001). The large values of u(a) predict that the diffusion

coefficient decreases by several orders of magnitude as the

lattice parameter shrinks. In their study of the LH2

complex, Tsapis et al. measured a reduced diffusion

coefficient that could not be explained by obstruction

factors that take into account distance changes on curved

surfaces (Tsapis et al., 2001). However, this reduction is

minor compared to the values predicted here, and their

experiments were carried out in a different cubic phase at

large lattice parameter values, a ; 131 Å. At such

hydrated states, the height of the crossing barrier is greatly

diminished and the elasticity calculations presented herein

accordingly predict little change in diffusive motion.

This model allows the computation of the driving force

for single proteins to join a sizable crystal, but the

complexity of the cubic phase geometry coupled with the
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difficulty of elastostatic calculations prohibits a detailed

calculation of the energetics of small clusters. Computations

of up to four proteins have revealed that interactions are

attractive in the neighborhood of horse saddles but repulsive

around the more stable monkey saddles (data not shown).

However, these calculations did not allow for significant

local rearrangements of the cubic phase structure, an

assumption that becomes suspect for even a few proteins

packed in one unit cell. For these reasons, an alternative

kinetic analysis of experimental data was carried out to

determine the free energy barrier to crystallization and the

critical cluster size.

Nucleation kinetics and experiments

The asymptotic approximation to the master equation, Eq. 4,

results in an integral equation describing the decrease in the

monomer concentration over the time course of the

experiment, t:

rT � r1ðtÞ ¼
s�1=2ffiffiffiffiffiffi

6p
p

ð t

0

kðt; tÞuðtÞeuðtÞ�ð1=2Þðs3=u2ðtÞÞdt; (5)

where k(t, t) is the final size of crystals that were nucleated at

time t, the chemical potential is expressed in terms of time,

and its dependence on the lattice parameter has been

suppressed. Three elements give rise to this equation: 1),

the nucleation rate of new crystals } exp(�(1/2) s3/u2), 2),

the growth of large clusters represented by the remaining

terms of the integrand, and 3), the total protein constraint. As

qualitatively described in the last section, Eq. 5 contains all

of the essential physics of the nucleation process.

From the analysis of Eq. 5, a nucleation period, tnuc., can

be identified:

log
Dn1=3

a3
tnuc:

� �
ffi � 3

5
logðeu0 � 1Þ � 2

5
eþ 2

5
G0; (6)

where n is the volume per protein in the crystal, e is the

nonentropic component of the chemical potential, and

nondimensional energies are in units of kBT. When the

initial value of the chemical potential, u0, goes to zero, the

nucleation time becomes infinitely long. For permissive

values of u0, the logarithm of the nucleation time is ;2/5 of

the initial free energy barrier. After the passage of several

nucleation times, the total number of proteins in a crystal is

logðk‘Þ ffi � 1

3
eþ 3

5
ðu0 þ G0Þ: (7)

From this equation, it is easy to see that large initial free

energy barriers give rise to large crystals. This is a result of

the reduction in the crystallization rate that decreases the

total number of crystals formed allowing those that do form

to adsorb more of the protein monomers. However, as can be

seen from Eq. 6, these experiments require exponentially

more time to carry out. In practice, we use the more

complicated counterparts to Eqs. 6 and 7, presented in

Appendix E, to relate experimentally measured quantities to

microscopic energies.

From the experimental measurements of Nollert et al.

(2001), the crystal size was determined as a function of

lattice parameter and plotted in Fig. 4 A. Using the known

crystal geometry and protein packing fraction, the number of

proteins per crystal was estimated and plotted in Fig. 4 B.

This completely determines the left-hand side of Eq. 7. The

electrostatic contribution to the chemical potential can be

computed by realizing that the two equations above have

only two unknowns, u0 and G0, whereas all other parameters

have been experimentally determined or are accessible by

theory. The nucleation time in Eq. 6 is required to complete

this reduction. We estimated this value at the upper lattice

parameter, a¼ 93.3 Å, where crystals take at least one month

but no more than nine months to nucleate. Assuming

an approximate nucleation time of three months coupled

with the log(k‘) graph, Eqs. 6 and 7—or more correctly

their complicated counterparts found in the supporting

material—were simultaneously solvedusinga standard search

algorithm. This gave eelec. ¼ 4.1 kBT and a free energy

barrier to crystallization of G0(93.3 Å) ¼ 43.6 kBT. More

importantly, u0 is determined for all lattice parameter

values using the model Eq. 2. Although the uncertainty in

the nucleation time is disconcerting, notice from Eq. 6 that

tnuc. is related to the dominant energies through an

exponential. This means that errors in tnuc. are exponen-

tially suppressed when determining energies.

Knowing u0(a), G0(a) was determined from the cluster

size analysis in conjunction with Eq. 7. Subsequently,

many parameters of interest were determined by using

standard formulas derivable from the energy model, Eq. 7

(see Appendix C). Over the range of crystallization we

found that the barrier height G0 ranges from 32.8 kBT at

86.3 Å to 43.6 kBT at 93.3 Å, and the corresponding

critical cluster sizes range from 16 to 29 proteins. Thus, the

free energy barrier to in cubo crystallization is comparable,

yet smaller, than barrier heights determined from simu-

lations of soluble globular proteins (;50 kBT) (ten Wolde

and Frenkel, 1997). Surprisingly, the surface energy term,

s ; 9.8 kBT, is essentially constant with only a very weak

dependence on the lattice parameter. A theoretical de-

termination of this result based on first principles seems

daunting; however, phase stability models of the cubics do

exist, and extending them to understand the energetics of

the interpolation region will be important for a more com-

plete understanding of in cubo crystallization (Anderson

et al., 1988; Schwarz and Gompper, 2000; Templer et al.,

1998).

The theoretical nucleation time was determined from Eq.

6, and this time is presented in Fig. 5. Above 93.3 Å, the

decrease in u0 and the concomitant increase in G0, both

appearing in exponentials, quickly drives the nucleation

time into an inaccessible range. Therefore, the reason that
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crystallization stops is not that the chemical potential has

gone to zero, but that the free energy barrier to nucleation

is too large. At the lower limit of 86.3 Å, our analysis does

not predict the inhibition of crystal formation, but the

elasticity analysis suggests an explanation. Protein diffu-

sion between monkey saddles is exponentially suppressed

by the factor u. If the dependence of u on the lattice

parameter is much steeper than the corresponding decrease

in the free energy barrier, G0(a), then the nucleation time is

driven back up into an inaccessible range (see Eq. 6). A

possible reason why this effect is not evident in our

calculations may be due to nonlinear elastic effects caused

by the high curvatures. The inset in Fig. 5 shows that at

this lower limit, the size of bR is comparable to the size of

the membrane regions through which the protein must

pass. The true energy cost for traversing these necking

regions may not be captured by linear calculations. Another

possibility may be that very small crystallites are stabilized

effectively annealing microscopic clusters into place. This

corresponds to a very small G0 and K, and because G0(a)

was not predicted from first principles, it is difficult to say

how it behaves for lattice parameter values out of the

experimental range.

DISCUSSION

We have presented a model for in cubo membrane protein

crystal growth based upon the elastic interactions between

FIGURE 4 Protein crystal sizes as a function of the lattice parameter. (A)

Crystal edge length as a function of the lattice parameter (adapted from

Nollert et al., 2001). The longest axis of bR crystals (n$ 10) was measured

as a function of salt concentration. Separately, the lattice parameter of the

cubic phase was determined as a function of the salt concentration. A linear

fit was computed to the lattice parameter versus salt concentration and used

to determine the crystal edge length as a function of lattice parameter as

shown. (B) Natural log of the total number of proteins in a crystal as

a function of the lattice parameter. bR crystals pack into hexagonal arrays at

a composition of 70% protein and 30% purple membrane lipid. The volume

of the crystals is V ¼ (33)/8�hl2, where h is the height and l is the longest

edge as measured in A. The height of the crystals was not accurately

measured but was estimated to be linearly proportional to the length with the

largest crystals having a height of ;5 mm and the smallest ;1 mm. This

approximation is not critical inasmuch as the logarithm of the total number is

plotted. Finally, the volume of a single bR protein was estimated from the

crystal structure as VbR ;p152�45 Å3. The slope of the linear fit is 0.94 Å�1.

From Eq. 7, the initial crystallization energy barrier ranges from 32.8 kBT at

86.3 Å to 43.6 kBT at 93.2 Å.

FIGURE 5 Upper and lower bounds for protein crystallization. The time

required to nucleate a crystal has been plotted from Eq. 6 using the

experimentally determined crystallization barrier height and the diffusion

coefficient for bR (solid blue curve). The flat bilayer diffusion coefficient

was modified in accord with the diffusion barrier between adjacent sites

plotted in Fig. 3 C. The yellow zone represents the admissible range for

growing crystals as shown in Fig. 4. The blue and yellow zones together

represent the theoretical bounds on crystallization. Relevant times are

indicated by solid red lines. The kinetic analysis predicts that the energy

barrier to forming crystals is sufficiently large to prohibit nucleation in less

than a year for lattice parameter values larger than 95 Å, as seen

experimentally. However, the theory does not predict a lower limit cutoff

for crystallization, but suggests the following scenario. At small lattice

parameters, the energy barrier prevents proteins from diffusing between

adjacent monkey saddle sites. This increases the nucleation time despite the

low nucleation barrier. Although this effect is included in the nucleation time

prediction (solid blue curve), the barrier to diffusion does not increase fast

enough to drive the nucleation time up noticeably. For ;84 Å the small axis

of the protein (;25 Å) is about equal to the diameter of the aqueous channel

of the cubic phase pictured in the inset, D ¼ a/2 � (lipid bilayer thickness)

;25 Å. The elastic calculations become suspect at this point and a ‘‘pinching

off’’ effect may make the diffusion barrier increase much more quickly than

predicted in Fig. 3 C. This limit is represented by the dashed blue line.
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membranes and proteins. The model explains how the

osmotic work done by shrinking the cubic phase increases

the elastic component of the chemical potential, ultimately

inducing the aggregation of proteins and the subsequent

formation of crystals. This elastic energy can be computed

based on the protein size and the elastic modulus and

geometry of the membrane. Our analysis of the membrane

bending energy explains the experimental growth of protein

crystals and its dependence on the lattice parameter.

However, both the compressional and bending modes of the

membrane are required to understand membrane mediated

interactions in flat bilayers containing gramicidin channels

(Harroun et al., 1999). Here we have not modeled the finite

thickness of the membrane for reasons discussed in Appendix

A. This aspect is required to estimate the compressional

energy induced by the hydrophobic mismatch between the

proteins and the membrane. It is very likely that compres-

sional energies play a role in in cubo protein crystallization,

but a simple estimate based upon the hydrophobic extent of

the membrane spanning section of bR and the average MO

bilayer thickness would be suspect because there is likely to

be significant membrane thinning at different points on the

cubic phase surface. To a first approximation, this energy is

captured in the constant term in Eq. 2, eelec., which accounts

for all lattice parameter independent energies. Furthermore,

as the lattice parameter decreases, a fraction of the osmotic

work goes into creating additional cubic cells. This

topological change is a consequence of the in-plane

incompressibility of the lipids, and alters the total Gaussian

curvature of the system. We have neglected the effect of this

global change in the Gaussian curvature on the local

interactions of the proteins with the cubic and lamellar

geometries. However, a more complete analysis would

investigate this connection along with the possibility that

compressional energy depends on the lattice parameter. Both

of these topics are beyond the scope of the present work.

Protein-protein interactions mediated by the bilayer lead

to complicated nonpairwise forces (Kim et al., 1998). This

complication coupled with the large curvatures and multi-

valued surface of the DMS approximation to the true Pn3m

phase makes a first principal determination of the nucleation

barrier a formidable task. Therefore, a lattice nucleation

model was developed to determine quantities of interest

directly from experimental data. This kinetic analysis

applies generally to all nucleation reactions. Some of the

parameters deduced are specific to bR crystallization,

although the prediction of the surface energy term should

apply to all experiments performed in the Pn3m phase.

Thus, we have begun to assemble a picture of in cubo

crystallization that should ultimately determine whether

a protein can be crystallized from the cubic phase, and the

model can provide a window within which crystallization

will occur. Several experiments must be performed to test

aspects of this theory. The diffusion of proteins in the Pn3m

cubic phase and nucleation times need to be measured over

a range of lattice parameter values. Additionally, crystal

size data must be recorded as a function of time as well as

lattice parameter. Furthermore, a more complete under-

standing of this phenomenon will require extending the

present work to address multiprotein interactions in an

extended DMS as mentioned above. Finally, we note that

the notion of lipid phase grain boundaries may contribute to

the nucleation mechanism. This does not affect the free

energy arguments presented here nor the general barrier

analysis carried out on the kinetic data, but it would play

a crucial role in actually determining the exact nature of the

transition state.

We have shown that the highly curved membranes

present in the in cubo method aggregate cylindrical

membrane proteins. It is natural to ask whether similar

mechanisms play a role in the cell. Although the cubic

phases might seem exotic, electron micrograph studies

suggest that they may be more commonplace than pre-

viously thought. Landh (1995) has identified three families

of cubic membranes at sites such as the plasma membrane,

smooth endoplasmic reticulum, nuclear membrane, and

mitochondria. These membranes are not static but appear to

undergo transitions similar to the one investigated here. For

example, light induces the transformation of the thylakoid

membrane of chloroplasts from a cubic to a lamellar

structure (Israelachvili and Wolfe, 1980), and starvation

elicits a cubic transition in the mitochondrial cristae of

amoeba (Deng et al., 2002). The connection between

membrane transformations and the presence of membrane

proteins was established in the mitochondria where it was

shown that the formation of flat cristae requires clustering

of F-ATPase (Paumard et al., 2002), a cylindrical mem-

brane protein (Stock et al., 1999). In mutant yeast cells

lacking F-ATPase subunits crucial for protein oligomeriza-

tion, the inner mitochondrial membrane adopts a morphol-

ogy similar to an onion peel.

The electron micrograph reconstructions of Alain

Rambourg show that the trans-Golgi network is composed

of multiple cisternae containing dilated progranules con-

nected by tubular networks (Rambourg and Clermont,

1990). Toward the more distal cisternae the connecting

regions appear increasingly tubular and more highly curved

whereas the progranules become larger and flatter. Our

results suggest that cylindrical proteins preferentially

populate the flattened region of the budding progranule.

Wu et al. (2001) found that the proper acidification of these

budding granules requires both a decrease in the proton

leakage and an increase in the density of V-ATPase proton

pumps, the structural homolog of the F-ATPase. Our

theory provides one mechanistic explanation for how the

cylindrically shaped V-ATPase becomes preferentially

enriched in the progranular membrane as a direct conse-

quence of the change in the trans-Golgi morphology.

Elastic membrane-protein interactions are substantial at

these sites of high curvature and must be added to the list
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of possible players in the organization and stabilization of

endomembranes.

APPENDIX A: MINIMAL SURFACES
AND MEMBRANE PROTEIN ENERGETICS

Minimal surfaces are those with zero mean curvature. This property implies

that they cover spaces with minimum surface area. The cubic phases are

represented by triply periodic minimal surfaces, and in particular, we are

interested in Schwarz’ D (diamond) surface. To simplify the examination of

the surface curvature, we employed the trigonometric approximation to the

true minimal surface:
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(A1)

where a is the period of the minimal surface or the lattice parameter. This

representation can be found on the minimal surfaces web site at the

Mathematical Sciences Research Institute: http://www.msri.org/publica-

tions/sgp/jim/geom/level/library/triper/index.html.

To study the local properties of a single unit cell, a judicious choice of the

origin allows a representation as a continuous surface height, z ¼ h(x, y),

that can be found from solving the above equation for z:

hðx; yÞ ¼ z ¼ a

p
� tan�1 �

sin
p

a
ðx þ yÞ

� �
cos

p

a
ðx � yÞ

� �
0
B@

1
CA: (A2)

The surface is thus described by

~rr ¼ ðx; y; hðx; yÞÞ: (A3)

With this representation, the surface curvatures can readily be determined

from standard formulas:

Kðx; yÞ ¼ eg � f 2

EG � F2

Hðx; yÞ ¼ Eg � 2 � fF þ eG

2ðEG � F2Þ ;
(A4)

where

e¼�~rrx � n̂nx; f ¼�1

2
ð~rrx � n̂ny þ~rry � n̂nxÞ; g¼�~rry � n̂ny

E¼~rrx �~rrx; F¼~rrx �~rry; G¼~rry �~rry: (A5)

Here n is the surface normal and EG � F2 is the surface metric.

To obtain a simple expression for the local shape of the minimal surface,

we use Eqs. A4 to identify the sites of minimum Gaussian curvature and fit

a local polynomial to this region. This approximate representation is used in

Fig. 1 C of the main text to plot the distribution of Gaussian curvature on the

surface of the unit cell in the vicinity of a point of minimum Gaussian

curvature. The polynomial description of this surface patch is a ‘‘monkey

saddle’’ given by

hðz;aÞ ¼Reðp1zþp3z
3 þp5z

5 þp7z
7 þp9z

9 . . .Þ
pp

i ¼f�2:163; 186:8; 12:50;�9:875; 8:042g310�3;

(A6)

where z ¼ r � expðiu), and the coefficients have been determined at a lattice

parameter of a ¼ p. The surface height at different lattice parameters is

determined from the scaling of the coefficients:

piðaÞ ¼ pp

i

p

a

� �i�1

:

This analysis was also been carried out around the horse saddle regions that

separate monkey saddles. The additional restriction that the Gaussian

curvature at the center of the saddle be equal to the curvature of the DMS

restricts the first polynomial coefficient:

hðz;aÞ ¼Reðp2z
2 þp6z

6 þp10z
10 þp14z

14 þp18z
18 . . .Þ

pp

i ¼f500; 38:8; 3:29;�0:104;�0:0g310�3: (A7)

The same scaling applies to these coefficients as the ones in Eq. A6.

Membrane protein interactions can now be calculated with the help of

Eqs. A6 and A7. The energy of the system is given by the standard

representation for the membrane bending energy (Helfrich, 1973):

E¼ 2k

ð
S

ðH�H0Þ2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Total mean bending energy

þ kG

ð
S

K dA|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Total Gaussian bending energy

: (A8)

Here, S is the neutral surface of the bilayer, H is the local mean curvature of

the membrane, and K is the Gaussian curvature. H0 is the spontaneous

curvature, reflecting any natural tendency for the surface to bend due to

molecular mismatch between the lipid headgroups and the hydrocarbon tails.

k and kG are the elastic constants corresponding to the mean and Gaussian

bending modes, respectively. Although MO monolayers have a very large

spontaneous curvature, H0 ; 0.05 Å�1 (Vacklin et al., 2000), the symmetry

of a bilayer formed from a single lipid eliminates the spontaneous curvature

(Helfrich, 1999). As mentioned in the main text, the Gauss-Bonnet theorem

from differential geometry tells us that the surface integral of the Gaussian

curvature does not affect the membrane bending energy.

We consider the energy minima of the Helfrich Hamiltonian in the

linearized limit of small curvatures with the assumptions previously stated.

This results in a biharmonic boundary value problem where the height, h, of

the neutral surface above the base plane satisfies

r4hðx;yÞ ¼ 0; ðjrhj� 1Þ:
The unperturbed height of the surface around the monkey saddle is domi-

nated by the p3(a) coefficient and the horse saddle by p2(a). Carrying out the

energy calculations around the monkey saddle, Eq. A6 approximates to

hðr;uÞ ¼ pp

3

p2

a2
r3cosð3uÞ: (A9)

Here, r and u are polar coordinates of the tangent plane. Now consider

a protein of radius R implanted ;r¼ 0. The distortion surface is represented

by biharmonic surface that asymptotes to the undisturbed surface Eq. 3 for r

� R and satisfies the contact boundary conditions

hðR;uÞ[0; hrðR;uÞ[0

for all u. Physically, the circle r ¼ R represents the hydrophobic belt around

the circumference of the cylindrical protein and the contact boundary con-

ditions indicate that the tangent planes of the bilayer along the contact circle

coincide with the plane of the circle. The required biharmonic solution is

hðr;uÞ ¼ pp

3

p2

a2
r3 þ2R6

r3
� 3R4

r

� �
cosð3uÞ:

The linearized approximation to the associated mean curvature is

Hðr;uÞ ffi 1

2
r2hðr;uÞ ¼ 12pp

3

p2

a2

R4

r3
cosð3uÞ:

The total mean curvature energy around the monkey saddle is then

calculated with Eq. (A8):
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eelas: ¼ 2k

ð
r[1

12pp

3

p2

a2

R4

r3
cosð3uÞ

� �2

dr du

¼ 72pðpp

3p
2Þ2 R

a

� �4

k (A10)

and the corresponding elastic energy around a horse saddle is

eelas: ¼ 16pðpp

2p
2Þ2 R

a

� �2

k: (A11)

From Eqs. A10 and A11, all of the graphs in Fig. 3 can be computed.

However, we used a biharmonic solver that explicitly includes all the higher

order terms in Eqs. A6 and A7 to compute these curves. The difference is

negligible and does not change the character of the surface. This solver was

formulated and written by M. G. and J. N. and is available upon request.

There are two aspects of the cubic phase that we have not yet addressed.

First, to understand the phase stability of membranes, it is necessary to

consider lipid chain packing in addition to membrane bending (Anderson et

al., 1988; Templer et al., 1998). To date, analysis of packing energetics has

required one to posit a priori the shape of the membrane surface and then

compute the lipid deformation energy using complicated geometrical

analyses (Anderson et al., 1988). Our approach is to solve a biharmonic

equation to determine the bending energy of the membrane. It is not clear

how to incorporate packing energetics into this scheme, but doing so would

permit an analysis of the membrane compression energetics mentioned in

the Discussion. Second, constant mean curvature surfaces based on the DMS

have been shown to exist and subsequently used to model the Pn3m phase

(Andersen et al., 1990; Grosse-Brauckmann, 1997; Templer et al., 1998).

We have carried out elastic energy calculations on these surfaces as well, and

the protein energetics are not greatly affected (data not shown).

APPENDIX B: NUCLEATION ON A LATTICE

The descriptive summary from the introductory text suggests that the

statistical mechanics of nucleation can be treated using a lattice model. This

model positsN proteins that are free to occupy m[N binding sites. Let nj $

0 be the occupation number of site j, j¼ 1, 2,. . ., m. The configuration space

of the lattice model consists of all sets of occupation numbers, (n1, n2, . . .

nm), consistent with the total particle constraint:

+
m

j¼1

nj ¼N: (B1)

The protein crystals are idealized as lattice sites with large occupation

numbers. For such large protein clusters, there is clearly a massive disruption

of the cubic phase, and a loss of the original binding sites. But in practice, the

volume fraction of final crystals is much smaller than the total volume of

original cubic phase. Therefore, the fraction of binding sites disrupted by

crystals is quite small and the entropy of the protein bilayer system should be

well approximated by this lattice nucleation scheme.

Let pk denote the total number of ‘‘k clusters’’, which are sites occupied

by k particles. The energy of a k cluster relative to an empty binding site is

taken as ek; the actual determination of this value is treated below. The

particle constraint and total energy take the form

N ¼ +
N

k¼1

k pk; E¼ +
N

k¼1

pkek: (B2)

Defining the binding energy of the k cluster as ek [ ke1 – ek and using the

particle constraint, the energy can be rewritten as

E¼�+
N

k¼2

pk ek; (B3)

where the constant term N�e1 is independent of configurations and is

dropped.

The conventional model for binding energy of a nucleating cluster

proposes a negative component proportional to the surface area of the

cluster, and a positive component proportional to the volume. Because k is

the number of proteins in the cluster, the surface area is proportional to k2/3

and the volume is k, so the conventional model is

ek ¼�3

2
sk2=3 þ ek; (B4)

where e and s are positive constants with the units of energy. The negative

surface component represents the energy cost of the transition zone between

the crystal and the bulk Pn3m phase. As discussed before, the bilayer

geometry that interpolates between the flat lamellar phase of the crystal to

the exterior cubic phase cannot have mean curvature identically zero, and

therefore has an elastic mean bending energy. Part of the volume component

arises from the elastic energy relieved by removing a protein from the cubic

phase and implanting it in the flattened out region of the crystal. There is an

additional bending energy component that originates from the purple

membrane lipid incorporated into the flattened stacks. These lipids have

been shown to favor a lamellar structure under crystallization conditions

(Landau and Rosenbusch, 1996). Additionally, electrostatic interactions

between the packed proteins will augment this bulk energy in a lattice

parameter independent manner. These short-range energies are difficult to

calculate, but are very important for protein crystallization in solution

inasmuch as they provide the only driving force for crystal growth.

The proceeding discussion has general implications for all nucleation

reaction scenarios and does not depend upon the exact nature of the driving

forces involved. These results are just as applicable to experiments

performed in solution as in cubo. The general properties of energy

landscapes that lead to nucleation are summarized in Fig. 6.

We now compute the entropy in the lattice model. Let D be the number of

distinct configurations, (n1, n2, . . . nm), consistent with the given numbers,

pk, of k clusters. The entropy of the lattice system is then S¼ kB log(D). D is

found by counting: the number of ways to choose p1 monomer sites is

m!

p1!ðm�p1Þ!
;

and the number of ways to place p2 dimers in the remaining m � p1 sites is

ðm�p1Þ!
p2!ðm�p1 �p2Þ!

:

In general, the number of ways to place pk k clusters in the remaining m� p1

. . . �pk � 1 sites is

ðm�p1 � . . .�pk�1Þ!
pk!ðm�p1 � p2 � . . .�pkÞ!

:

FIGURE 6 Energy barrier in k space. Crystallites smaller than the critical

cluster size, K, break up on the average whereas larger clusters

deterministically grow. For k � K, the crystal grows with a driving force

equal to e.
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The total number D of configurations with pk k clusters, k ¼ 1,. . ., N is the

product of the above factors,

D¼ m!

p1!ðm�p1Þ!
� ðm� p1Þ!
p2!ðm�p1 �p2Þ!

� . . .

� ðm�p1 � . . .�pN�1Þ!
pN!ðm� p1 �p2 � . . .�pNÞ!

:

After cancellations the entropy becomes

S

kB

¼ logðDÞ

¼ logðm!Þ�+
N

1

logðpk!Þ� logðm�p1 � . . .�pNÞ!: (B5)

In the thermodynamic limit as m ! ‘ with N/m ! rT fixed, the entropy

density becomes

s[
S

m
¼�kB +

‘

1

rk logrk � r logr

� �
; r[1�+

‘

1

rk: (B6)

The energy density has the form

e[
E

m
¼�+

‘

k¼2

rkek: (B7)

Equilibria are characterized by the minima of the free energy density, f¼ e –

TS. Equilibrium values of rk are given by @kf ¼ 0, and in the dilute protein

limit, r � 1, where r ; 1 the following relationship holds

rk ¼ rk
1e

ðek=kBTÞ: (B8)

Various cluster statistics, such as the average cluster size, can be derived

from Eq. B8 in conjunction with the thermodynamic limit of the particle

constraint Eq. B1.

APPENDIX C: KINETICS OF NUCLEATION

If the particle density is sufficiently large, it is easy to show that the

equilibrium condition, Eq. B8, is not compatible with the total particle

density constraint. Therefore, we develop a kinetic framework to interpret

crystallization experiments. Rewriting the equilibrium condition Eq. B8, as

rk ¼ e�ðgk=kBTÞ; gk ¼�ek þ kBT � k � log
1

r1

� �
: (C1)

This allows us to interpret gk as an activation barrier height in a nucleation

reaction

ðk�1 clusterÞþmonomer $ðk clusterÞ:
Substituting into Eq. C1 Eq. B4 for the binding energy, ek, gives

gk ¼
3

2
sk2=3 �uk; (C2)

where u is the chemical potential:

u¼ e� kBT log
1

r1

� �
: (C3)

Fig. 6 is a graph of gk versus k of j[ 0. gk achieves its maximum at the

critical cluster size:

k ¼K[
s

u

� �3

: (C4)

It has a maximum value

gK ¼
1

2

s3

u2
: (C5)

Notice that as k!‘, gkþ1 – gk!�u, so that the chemical potential can be

thought of as the driving force for crystallization. The standard kinetics of

these reactions is described by a system of ordinary differential equations for

the densities as a function of time: @trk¼ jk�1� jk[�D� jk, where the j’s are

the cluster creation rates, and we have introduced the discrete difference

operator 6D6 Xk [ Xk61 � Xk. These fluxes are related to the densities by

jk ¼ ckr1rk �dkrkþ1: (C6)

The first term on the RHS is the bimolecular reaction rate of creation of a kþ
1 cluster due to the addition of a single monomer to a k cluster. The

prefactors in this equation are the creation rate constants ck and the

destruction rates dk. The ratio of these two coefficients is determined from

the energetics through the principle of detailed balance, which says that the

flux should be zero at equilibrium

dk

r1ck

¼ rk

rkþ1

¼ eð1=kBTÞðgkþ1�gkÞ: (C7)

This relation allows us to rewrite the flux as

jk ¼ �dkDþ|fflfflffl{zfflfflffl}
leads to diffusion

rk þdk eð�Dþgk=kBTÞ �1
	 
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

drift velocity[vk

rk (C8)

In Eq. 8, the diffusion coefficient dk and the drift velocity vk have been

identified. We see that when k\K, the argument of the exponent is positive,

gk � gkþ1[0, the drift velocity is negative, and protein clusters dissolve on

average. When the cluster size is larger than the critical cluster size, gk –

gkþ1 \ 0, the clusters grow on average.

For large k the diffusion component reduces to

1

kBT
Dþgk ¼

3

2
sfðkþ1Þ2=3 � k2=3g�uffisk�1=3 �u (C9)

and the drift velocity becomes

vk ffi dkfeðu=kBTÞ�ðs=kBTÞk�1=3 �1g: (C10)

The asymptotic form of dk for k � 1 is identified by correspondence with

macroscopic crystallization: Consider a single large crystal of roughly

spherical shape surrounded by monomer at uniform density. Because p1 ¼
mr1 is the number of sites occupied by monomer, and there are four binding

sites per unit cell of side a, the volume density of monomer far from the

crystal, c‘, is determined by

r1 ¼
p1

m
¼ p1

4V=a3ð Þ ¼
a3

4
c‘: (C11)

Here, V is the total volume of the cubic phase. At the surface of the crystal,

quasi-static equilibrium prevails, and the local value of r1 at the interface is

determined so that gkþ1 ¼ gk. By Eq. (C9), this means

e� kBT log
1

r1

� �
[u¼sk�1=3 ) r1 ¼ e�ðe=kBTÞþðs=kBTÞk�1=3

:

The corresponding value of the volume density at the interface is given by

the quasi-steady diffusion of the monomer into the crystal:

cj ¼
4

a3
e�ðe=kBTÞþðs=kBTÞk�1=3

: (C12)
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The crystal presumably grows slowly so there is quasi-steady diffusion of

monomer into the crystal. When the crystal has a radius of R, the

concentration field, c ¼ c(r), of the monomer in r[R is given by c(r) ¼ c‘
� (c‘ � cj)�R/p. D is the macroscopic diffusion coefficient of the monomer

in the bulk cubic phase, and the flux of monomer into the crystal is given by

dk

dt
¼DcðRÞ4pR2 ¼ 4pDRðc‘� cjÞ:

Substituting for c‘ and cj from Eqs. C11 and C12,

dk

dt
¼ 16p

DR

a3
fr1 � e�ðe=kBTÞþðs=kBTÞk�1=3g:

Setting r1 ¼ exp((u� e)/kBT) as follows from the definition of u in Eq. C3,

there results

dk

dt
¼ 16p

DR

a3
e�ðe=kBTÞþðs=kBTÞk�1=3feu�ðs=kBTÞk�1=3 �1g: (C13)

If n is the volume per protein in the crystal, then

k ¼ 4p

3

R3

n
:

So

R¼ 3kn

4p

� �1=3

:

And Eq. 13 becomes

dk

dt
¼ 16p

3

4p

� �1=3
Dy1=3

a3
k1=3e�ðe=kBTÞþðs=kBTÞk�1=3

3feðu=kBTÞ�ðs=kBTÞk�1=3 �1g: (C14)

Comparing the drift velocity to @tk leads to the asymptotic identification of dk,

dk ffi deðs=kBTÞk�1=3

k1=3: (C15)

And when k � 1,

d[31:2
Dy1=3

a3
e�ðe=kBTÞ: (C16)

If k� K� 1, then sk�1/3 � sK�1/3 ¼ u. Assuming that u/kBT is of order

1 or smaller, it follows that sk�1/3 � 1 and Eq. 6 reduces to

dk ffi d k1=3: (C17)

To nondimensionalize these results, we measure all energies in units of

kBT, and time in units of 1/d given in Eq. 5. The dimensionless equations are

r_k ¼ jk�1 � jk: (C18)

For j $ 2, with

jk ¼ dk ðe�Dþgk � 1Þrk �Dþgkf g: (C19)

In Eq. C19,

gk[
3

2
sk2=3 �uk; u[e� log

1

r1

� �
;

dk ffi d k1=3esk�1=3

:

(C20)

To close this system of equations, one more equation governing the

monomer concentration is required. This is just the particle constraint:

rT ¼ r1 þ2r2 þ3r3 þ . . . : (C21)

APPENDIX D: NUCLEATION RATE

If the activation energy barrier gK is sufficiently high, a quasi-steady

condition develops in which jk is asymptotically uniform, jk ; j for all values

of k on the order of the critical cluster size K. As k ! ‘, jk presumably

asymptotes to zero. An estimate for j in terms of the energy barrier is now

derived: In Eq. C19, set jk ; j to get

j ¼ dk e�ðgkþ1�gkÞrk �rkþ1

� �
or

egkþ1

dk

j ¼ egkrk � egkþ1rkþ1: (D1)

It follows from Eq. D1 that

j +
n

k¼1

egkþ1

dk

¼ eg1r1 � egnþ1rnþ1; (D2)

where g1 ¼ �e1 � log(r1) ¼ �log(r1), so exp(g1) r1 ¼ 1. For n � K, one

expects that rn is much less than the equilibrium concentration, exp(�gn), so

that exp(gnþ1)� rnþ1 ! 0 as n ! ‘ and Eq. D2 reduces to a formula for j:

j ¼ +
‘

k¼2

egk

dk�1

� ��1

: (D3)

In Eq. D3, assume that dk�1 and gk are values of analytic functions evaluated

at integer arguments k, and approximate the sum by an integral,

+
‘

k¼2

egk

dk�1

ffi
ð‘

2

egk

dk�1

dk: (D4)

For K� 1, the main contribution to the integral comes from k near K where

gk is a maximum. The standard Laplace approximation to the integral isð‘

2

egk

dk�1

dk ffi
ffiffiffiffiffiffiffiffi
2p

jg0Kj

s
egK

dK

: (D5)

From Eqs. D3–D5, there follows the asymptotic formula for j,

j ¼
ffiffiffiffiffiffiffiffi
jg0Kj
2p

r
dKe�gK ; (D6)

which has a familiar form from Kramers rate theory. Given gk and dk as in

Eqs. C20, one obtains

K ¼ s

u

� �3

; gK ¼
1

2

s3

u2
; jg0Kj ¼

1

3
sK�4=3; dK ¼K1=3eu:

Thus, Eq. D6 for j reads

j ffi 1ffiffiffiffiffiffi
6p

p s�1=2ueje�1=2ðs3=u2Þ (D7)

APPENDIX E: TIME EVOLUTION
OF CRYSTALLIZATION

The initial state at t ¼ 0 is pure monomer at density rT. There is an initial

transient that establishes the quasi-steady conditions for k on the order of the

critical cluster size K: The jk values are approximated by the uniform value

for k on the order of K given by Eq. D7. For k\K, the densities are close to

quasi-equilibrium values
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rk ffi e�gk ¼ eekrk
1: (E1)

Initially there are very few large clusters with k [ K, so the particle

constraint, Eq. C21, is approximated by

rT �r1 ffi 2r2 þ3r3 þ . . .þKrK

ffi 2ee2r2 þ3ee3r3 þ . . .þKeeKrK:

For k\K, the ek are negative and decreasing, so

rT �r1\2r2
1 þ3r3

1 þ . . .þKrK
1 ffi 2r2

1 � r1

for r1 � 1. Hence this initial transient does not significantly change the

monomer density from its initial value of rT.

The first clusters to nucleate (i.e., exceed the critical cluster size, K) are

the biggest. When these are much greater than K, they are the dominant

consumers of monomers. Their growth depletes the monomer, which in turn

decreases the chemical potential, u, and raises the activation energy barrier

gK ffi 1/2 s3/u2. Eventually, nucleation is effectively shut off, but the large

crystals continue their supercritical growth, with k�K. Ultimately, there is

sufficient depletion of the monomer, and the chemical potential is so small

that the critical cluster size, K ffi (s/u)3, catches up to the crystals. This

signals the end of the supercritical growth phase and the beginning of the

coarsening phase.

How does one quantitate this scenario? Traditional asymptotics

introduces scalings of the variables and reduced equations are obtained as

limits of scaled equations. Here, a priori guessing of scalings is tricky, but

the simplest reduced kinetics with the essential mechanisms is clear. So we

proceed straight to the reduced kinetics and its predictions. Formal scaling

and reduction give a posteriori validation of the method.

In reduced kinetics, rk and jk are represented as

rk ¼ rðk; tÞ; jk ¼ jðk; tÞ; (E2)

where r(k,t) and j(k,t) are values of analytic functions at integer arguments.

The time dynamics, Eq. C18, is translated into the local conservation partial

differential equation,

@trþ@kj ¼ 0: (E3)

The approximation to j in Eq. C19 for k � K � 1 is

j ffi ðeu�1Þk1=3r (E4)

This reduction is based on Dþgk ffi �j for k � K and the assumption that

Dþrk � rk, which holds if the scale of k in r(k,t) is much larger than unity.

In summary, r(k,t) satisfies the advection equation

@trþðeu�1Þ@kðk1=3rÞ ¼ 0: (E5)

The nucleation rate in Eq. D7 gives an effective flux boundary condition as

k ! 0:

j[ðeu�1Þk1=3r! 1ffiffiffiffiffiffi
6p

p s�1=2u2eue�1=2ðs3=u2Þ: (E6)

Finally, the continuous approximation of the particle constraint Eq. C21 is

eu�e ¼ rT �
ð‘

0

krðk; tÞdk; (E7)

where r1 has been written in terms of the chemical potential.

The solution of Eqs. E5–E7 for r(k,t) and u(t) representing initial

nucleation and supercritical growth is constructed as follows. First, we cast

the advection equation, Eq. E5, in the characteristic form,

dr

dt
¼�1

3
ðeu�1Þk�2=3r; (E8)

which holds along characteristic curves in the k,t plane. These curves satisfy

dk

dt
¼ k1=3ðeu�1Þ: (E9)

For t[ t, the characteristic emanating from (k,t) ¼ (0,t) is given by

3

2
k2=3 ¼

ð t

t

euðt9Þ �1
	 


dt9: (E10)

In Eq. E10, the chemical potential, u(t), is not yet determined. But because

equilibrium is not reached, u(t) is positive. In this case it follows from Eq.

E10 that the characteristics have k increasing with t. Fig. 7 is a qualitative

picture of the characteristics.

The region of nonzero density is above the t ¼ 0 characteristic given by

Eq. E10, with the lower limit replaced by t ¼ 0. In this region, the t of the

characteristic that passes through (k, t) is a function of k and t,

t¼ tðk; tÞ: (E11)

The values of r along each characteristic are determined as solutions of the

ordinary differential equation, Eq. E8. But because k is increasing in time, t,

one can use k as an independent variable in place of t. Dividing Eq. E8 by

Eq. E9, one obtains

dr

dk
¼� r

3k
:

And the solution along the characteristic emanating from (0, t) is

r¼ lðtÞ
k1=3

; (E12)

where l is a function of t, to be determined from the flux condition Eq. E6:

k1=3r! 1ffiffiffiffiffiffi
6p

p s�1=2uðtÞeuðtÞ
euðtÞ �1

e�1=2ðs3=u2ðtÞÞ; (E13)

as k! 0 along the characteristic from (0, t). Comparing Eqs. E12 and E13,

it is evident that

lðtÞ ¼s�1=2ffiffiffiffiffiffi
6p

p uðtÞeuðtÞ
euðtÞ �1

e�1=2ðs3=u2ðtÞÞ:

Finally, the solution for r is,

FIGURE 7 Qualitative characteristic curves. The cut C at time t intersects

characteristics giving the size of each crystal. Notice that there is a vanguard of

large crystals (i.e., many characteristics) near the red curve, which is the initial

characteristic. As time increases, the density of characteristics falls off.
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r¼s�1=2ffiffiffiffiffiffi
6p

p 1

k1=3

uðtÞeuðtÞ
euðtÞ �1

e�1=2ðs3=u2ðtÞÞ; (E14)

where t ¼ t(x,t) is implicitly determined by Eq. E10. r is largest when u(t)

is largest and that happens at t ¼ 0. Characteristics in the k,t plane can be

thought of as the trajectories of individual crystals, so the profusion of early

crystals with t near zero is indicated in Fig. 7 by a high density of

characteristics near the t ¼ 0 curve.

We turn now to the determination of the chemical potential u(t).

Substitute the solution to Eq. E14 for r into the particle constraint, Eq. C21:

euðtÞ � eu0 ¼�s�1=2ffiffiffiffiffiffi
6p

p ee
ðk0ðtÞ

0

k2=3 uðtÞ
euðtÞ �1

euðtÞ�1=2ðs3=u2ðtÞÞdt:

(E15)

Here, k0(t) is the equation for the t ¼ 0 characteristic, given by Eq. E10 with

the lower limit set to zero. In addition rT ¼ r1(t ¼ 0) has been replaced by

exp(u0 � e), where u0 [ u(0). Think of Eq. E15 as a line integral in the k,t

plane along the line segment of constant t, as shown in Fig. 7. As k increases

from 0 to k0(t), the values of t ¼ t(t,k) decreases from t to 0. Hence t is

used as a variable of integration in place of k. Using

k�1=3@tk ¼�ðeuðtÞ �1Þ
as follows from Eq. E10, there results

euðtÞ � eu0 ¼�s�1=2ffiffiffiffiffiffi
6p

p ee
ð t

0

kðt;tÞ|fflffl{zfflffl}
Supercritical growth

uðtÞeuðtÞ�1=2ðs3=u2ðtÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Nucleation

dt:

(E16)

Here, k ¼ k(t, t) is given in terms of u(t) by Eq. E10. Hence Eq. E16 is an

integral equation for the chemical potential, u(t).

Eq. E16 is a summary of the essential physics. The rate of nucleating

clusters is proportional to the factor exp(�1/2 s3/u2). Supercritical growth

of the clusters is represented by k(t, t) given by Eq. E10. Both effects are

evident in the integral on the RHS that represents the number of particles in

the supercritical crystals. As this number increases, monomer is depleted and

the chemical potential concomitantly decreases toward zero.

The main contribution to the integral in Eq. 16 comes from a neighbor-

hood of t ¼ 0, when the nucleation rate is largest. This means that the

biggest crystals are produced the earliest and deplete the monomer fastest.

Notice that a small relative decrease in the chemical potential from its initial

value is sufficient to greatly decrease the nucleation rate, exp(�1/2 s3/u2),

and put an end to nucleation. The range of nucleation times, t, that dominate

the integral Eq. E16 is referred to as the nucleation era. A distinguished limit

of this equation describing the nucleation era is identified by scaling of the

chemical potential differences u0 � u(t) and time.

The natural scaling of u0 � u(t) is 1/k0, where k0 is the initial size of the

critical cluster, K0 [ (s/u0)
3. Define the quantity,

gðtÞ[ u0 �uðtÞ
K0

: (E17)

Then the energy barrier at time t is approximated by

1

2

s3

u2ðtÞ ¼
1

2

s3

u0 �gðtÞ=K0ð Þ2 ffiG0 þg;

where

G0[
1

2

s3

u2
0

(E18)

is the initial energy barrier at the beginning of the crystallization experiment.

It follows that

e�1=2ðs3=u2ðtÞÞ ffi e�G0e�g: (E19)

The exponential factor in Eq. E19 undergoes a relative change of order unity

when the chemical potential changes by an amount of order 1/k0. For the

range of t in which u(t) � u0 ¼ O(1/k0), the collection of factors containing

the chemical potential in Eq. E16 are approximated by

u0e
u0�G0e�gðtÞ: (E20)

From Eq. E10 the corresponding approximation to k(t,t) is

kðt;tÞ ffi 2

3
ðeu0 �1Þðt� tÞ

� �3=2

: (E21)

In the LHS of Eq. E16,

euðtÞ � eu0 ffi�eu0

K0

gðtÞ: (E22)

Under the approximations of Eqs. E19–E22, Eq. 16 reduces to

g¼h5=2

ð t

0

ðt� tÞ3=2
e�gðtÞdt: (E23)

where h is a constant defined by

h5=2[
1

2

s�1=2ffiffiffiffiffiffi
6p

p ee
2

3
ðeu0 �1Þ

� �3=2

G0e
�G0 : (E24)

The pre-factor h5/2 in Eq. E23 can be absorbed by scaling the time T ¼
ht, and representing g as a function of T, g ¼ g(T). Then Eq. E23

becomes a parameter-free equation

g¼
ðT

0

ðT � tÞ3=2
e�gðtÞdt: (E25)

Physically, 1/h is the dimensionless duration of the nucleation era. This can

be converted into a dimensional nucleation time,

tnuc: ¼ :149
s

kBT

� �1=5

eðu0=kBTÞ � 1
	 
�3=5

3e�2=5ðe=kBTÞ G0

kBT

� ��2=5

e2=5ðG0=kBTÞ a3

Dn1=3
: (E26)

The integral equation, Eq. E25, has a unique solution. As T ! 0, g(T) !
0 and the asymptotic behavior of g is seen from Eq. E25 to be

gðTÞ ffi 2

5
T5=2 as T ! 0; (E27)

assuming

C[

ð‘

0

e�gðTÞdT (E28)

exists, the large T behavior of g is seen to be

gðTÞ ffiCT3=2 as T !‘: (E29)

This asymptotic behavior is consistent with the convergence of the integral

in Eq. E28. Assuming g is known, physical predictions about the nucleation

era are presented.
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The total number of crystals formed during a typical experiment readily

follows. The total density of nucleated clusters is

rc ¼
ð‘

0

jðTÞdtffi 1ffiffiffiffiffiffi
6p

p s�1=2

ð‘

0

ueue�1=2ðs3=u2Þdt: (E30)

Here, the approximation Eq. E6 to u is used. The dominant contribution

to the integral comes from t ¼ O(tnuc) and the relevant approximation is

rc ffi
1ffiffiffiffiffiffi
6p

p s�1=2u0e
u0

e�G0

h

ð‘

0

ueue�gðTÞdT

¼ Cffiffiffiffiffiffi
6p

p s�1=2u0e
u0

e�G0

h
:

Using the values of h in Eq. E24,

rc ffi 0:70s�3=10u0e
u0ðeu0 �1Þ�3=5

e�ð2=3ÞeG�2=5
0 e�ð3=5ÞG0 :

(E31)

The total number of nucleated crystals is Nc ¼ mrc where m is the total

number of binding sites in the whole cubic phase. The approximation to Nc

based on the dominant terms in Eq. E31 is log(Nc) ffi log(m) � 3/5G0, or

restoring G0 to dimensional form,

logðNcÞ ffi logðmÞ�3

5

G0

kBT
: (E32)

The time duration of the supercritical growth era determines the size of the

nucleated crystals. As noted before, the cluster density, r(k,t), has its main

concentration about the t ¼ 0 characteristic in the k,t plane. The detailed

structure of this concentration is irrelevant so in effect there is a rough

approximation to r(k,t):

rðk; tÞ ffi rcdðk� k0ðtÞÞ: (E33)

Substituting Eq. E33 into the particle constraint, Eq. C21, there results

euðtÞ�e ffi eu0�e� k0ðtÞrc or

euðtÞ �1ffi eu0�e�1� eerck0ðtÞ:
(E34)

As long as the crystals remain much larger than the critical size k0(t) � K¼
s3/u3, the crystal size k0(t) evolves according to the ordinary differential Eq.

E9. Substituting into Eq. E9 with the approximation for exp(u(t)) � 1, there

results

dk0

dt
¼ k1=3

0 eu0 �1� eerck0f g: (E35)

In Fig. 8 there is a graph of @k0/@t vs. k0 based on Eq. E35. According to

Eq. E35,

k0ðtÞ! k‘[e�e e
u0 �1

rc

(E36)

as t ! ‘ . Physically, k‘ is the size of the crystal obtained when most

of the monomer is depleted. The time constant associated with the decay

of k0(t) to k‘ is found from the derivative of the RHS of Eq. E35 at

k0 ¼ k‘:

time¼ 1

k1=3
‘
rc

¼ ee=3r�2=3

ðeu0 �1Þ1=3
:

Because rc in Eq. E31 is proportional to exp(�2/5G0), this growth time is

proportional to exp(2/5G0), the same as tnuc. Hence the supercritical growth

era has essentially the same duration as the nucleation era.

This description of growth breaks down when u(t) becomes so small that

the critical cluster size catches up with the size of the existing crystals. An

order of magnitude balance between k‘ in Eq. E36 and the critical cluster

size determines this crucial value of u(t):

uðtÞ
u0

� �2

¼ eeG0rc

eu0 �1
:

Because rc is proportional to exp(�3/5G0), it is seen that u(t) is a small

fraction of its original value of u0 at the end of the supercritical growth

phase. From Eq. E34, it is seen that the crystal size at the end of supercritical

growth phase is very close to k‘ in Eq. E36.

For crystallization experiments that run for several nucleation times tnuc,

the size of crystals produced is k‘. It follows from Eq. E36 and the result Eq.

E31 for rc that

k‘ ffi 1:43
s�3=10

C

e�u0

u0

ðeu0 �1Þ8=5
e�e=3G2=5

0 e3=5G0 : (E37)

Using the surface tension model to solve for s in terms of G0 and u0, it is

possible to express the two key Eqs. E26 and E27 in only a handful of

variables

logðtnuc:Þ ffi log
0:156 a3

D0n1=3
e�ð2=5Þlogð1=rT Þu2=15

0

�
3e�ð2=5Þu0ðeu0 �1Þ�3=5

G�1=5
0 euþ2=5G0

�
logðk‘Þ ffi log 1:33e�ð1=3Þlogð1=rTÞu�6=5

0 ðeu0 �1Þ8=5
�

3G3=10
0 e�ð4=3Þu0þð3=5ÞG0

�
: (E38)

The common-sense approximations to these two equations are presented in

the main text. Experimental measurements of tnuc and k‘ allow a de-

termination of G0 and u0 inasmuch as all other parameters are accessible

through theory or experiment.

APPENDIX F: CRYSTALLIZATION
PREPARATION AND PHYSICAL CONSTANTS

The standard experimental setup used to create Fig. 4 of the main text

requires mixing 6 mg of dry MO (initially in the lamellar crystalline phase),

with 4 ml of bR solution (10 mg/ml). The approximate number of proteins in

this setup can be determined from the molecular weight of bR ¼ 26.79 kDa.

The mass of the protein in the sample is

FIGURE 8 Graph showing the dependence of @tk0 on k0.
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10
mg

ml
�4ml �10�3 ml

1ml
¼ 4310�2 mgbR:

Thus, there are 2.41 3 1019 Da of bR, or ;9.0 3 1014 total proteins in the

sample. Additionally, the size of a single protein can be determined from the

crystal structure, as VbR ; p152�45 Å3 ¼ 31792.5 Å3 (15 Å radius and 45 Å

height). This then leads to a bR volume in the crystal of n1/3 ¼ (VbR/0.7)1/3 ¼
35.7 Å. The factor 0.7 accounts for the fact that the final crystal is only 70%

protein.

The diffusion coefficient of bR proteins in MO lipid bilayers can be

estimated as follows. The viscosity of an MO bilayer was recently estimated

to be hm ¼ 1.5 6 0.15 P (Tsapis et al., 2001). Using an estimated radius of

15 Å, the Saffman and Delbruck formula for protein diffusion gives

(Saffman and Delbruck, 1975):

D¼ kBT

4phmdm

ln
hmdm

hr
�g9

� �
;

where dm ¼ 35 Å is the bilayer thickness, h ¼ 0.01 P is the viscosity of the

bounding fluid (water), and g9 is Eulers constant (0.5772). kBT is 4.1 3

10�21 J at room temperature, which leads to a flat bilayer diffusion

coefficient of D0 ¼ 3.28 3 10�12 m2/s or 3.3 mm2/s (1 P ¼ 0.1 kg/(m�s)).
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