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SUMMARY

The electrostatic properties of membrane proteins
often reveal many of their key biophysical character-
istics, such as ion channel selectivity and the stability
of charged membrane-spanning segments. The
Poisson-Boltzmann (PB) equation is the gold stan-
dard for calculating protein electrostatics, and the
software APBSmem enables the solution of the PB
equation in the presence of a membrane. Here,
we describe significant advances to APBSmem,
including full automation of system setup, per-
residue energy decomposition, incorporation of
PDB2PQR, calculation of membrane-induced pKa

shifts, calculation of non-polar energies, and com-
mand-line scripting for large-scale calculations. We
highlight these new features with calculations carried
out on a number of membrane proteins, including the
recently solved structure of the ion channel TRPV1
and a large survey of 1,614 membrane proteins of
known structure. This survey provides a comprehen-
sive list of residues with large electrostatic penalties
for being embedded in the membrane, potentially
revealing interesting functional information.

INTRODUCTION

The Poisson-Boltzmann (PB) equation is a popular method for

calculating the electrostatic properties of proteins (Baker et al.,

2001; Brooks et al., 2009; Gilson and Honig, 1987; Grant et al.,

2001; Zhou et al., 2008). The equation relates the fixed charges

on a protein of known structure to the electrostatic potential

from which electrostatic energies can be determined (Fogolari

et al., 2002). Formally, the PB equation is a second-order partial

differential equation,

�V$½εðrÞVfðrÞ�+ εðrÞk2ðrÞsinh½fðrÞ�= e

kBT
4prðrÞ; (Equation 1)

where f = eF/kBT is the reduced electrostatic potential, ε is the

dielectric value of the different spatial regions (water, membrane,

protein), k is the Debye-Hückel screening parameter related to
1526 Structure 23, 1526–1537, August 4, 2015 ª2015 Elsevier Ltd Al
the ionic conditions of the solvent, r is the spatial distribution

of the fixed charges on the protein, and r is the position in

three-dimensional space. This theory has been applied widely

to study ligand binding, protein-protein interactions, and confor-

mational change, with the majority of the studies aimed at solu-

ble proteins.

Electrostatics play also an intimate role in the function of mem-

brane proteins, and the low-dielectric nature of the membrane

has a large influence on the electric fields and energetics of pro-

teins and small molecules at or near the lipid bilayer. Key studies

have used PB theory to determine the protonation state of resi-

dues in membrane-spanning regions (Bashford and Gerwert,

1992; Karshikoff et al., 1994), the insertion energetics of hydro-

phobic helices (Ben-Tal et al., 1996), the influence of the mem-

brane potential on transmembrane proteins (Roux, 1997), and

how themembrane alters the electrostatic potential experienced

by ions passing through channels (Roux and MacKinnon, 1999).

While there are several PB solvers available for studying soluble

proteins, few have been adapted to explore the influence of the

membrane. Previously, we developed the APBSmem software

to enable users to carry out a number of calculations relevant

to specific membrane processes (Callenberg et al., 2010).

APBSmem uses the Adaptive Poisson-Boltzmann Solver

(APBS), an open-source finite difference PB solver, as the

back-end for its electrostatics calculations (Baker et al., 2001).

Here, we report several significant advances to APBSmem

that make it more versatile, providing additional energetics infor-

mation for users, increased protein andmembranemanipulation,

bundling with PDB2PQR for pKa calculations, and the ability to

report non-polar energy values, which are needed to better

model membrane protein stability. Several of these additions

are shown in Figure 1 and are discussed in detail in the Experi-

mental Procedures and Supplemental Information. We demon-

strate the new features of APBSmem through five case studies.

The first two cases explore permeation of cations through

the recently solved structure of the thermosensitive channel

TRPV1. APBSmemautomatically identifies residues known to in-

fluence conduction, and provides a rationale for pH-dependent

changes in ion selectivity. Case III shows how the software can

be used to quickly identify residues whose protonation states

are altered by themembrane, and case IV explores properties re-

vealed from a scan of electrostatic insertion energies for all multi-

pass membrane proteins of known structure. Finally, case V

shows how protein stability and orientation in the membrane
l rights reserved
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Figure 1. Workflow for APBSmem

PDB or PQR files (green) can be loaded into

APBSmem through the GUI or via input files

executed from a command line. The bundled

PDB2PQR program will protonate PDB files fol-

lowed by initial protein surface determination with

APBS. A membrane-flooding algorithm (see Fig-

ure 2) will add the presence of a low-dielectric

membrane. APBS and MSMS can then be used to

determine the energies for a number of situations

outlined in cases I–V.
can be predicted with a simple model based on non-polar ener-

getics coupled with electrostatics.
RESULTS

Case I: Ion and Small-Molecule Placement and
Manipulation for Computing Electrostatic Energy
Profiles
Due to the low-dielectric nature of the lipid bilayer, ions and small

charged molecules cannot readily cross the membranes of cells

and organelles. Instead, ion channels and transporters span

membranes to facilitate movement. Since ions and many small

molecules are electrically charged, electrostatic interactions

with the channel or transporter are key determinants of the

magnitude of the flux and substrate selectivity. Previously, we

demonstrated the ease with which APBSmem can be used to

calculate the electrostatic solvation free energy of potassium

ions in the pore of the membrane-embedded KcsA potassium

channel (Callenberg et al., 2010) by revisiting the seminal study

on this topic by Roux and MacKinnon (1999). The ion transfer

free energy, DGelec, is calculated as

DGelec =EP; I � EP � EI; (Equation 2)

where EP,I is the electrostatic energy of the protein plus ion

embedded in the membrane, EP is the energy of the protein in

the membrane, and EI is the energy of the ion in solution.

A description of how total electrostatic energies (as in Equation 2)

are computed from Equation 1 is presented in the Supplemental

Information. Unfortunately, there are still several major hurdles to

carrying out these calculations that make them difficult for non-

experts, including charge assignments, orienting the protein in

the membrane, editing the dielectric around the protein to

include the influence of the membrane, and then placing and

moving ions through pathways of interest. We have added fea-

tures to APBSmem that streamline these steps (Figure 1).

We examine ion movement through TRPV1, a narrow channel

that is selective for Ca2+ and to a lesser degree for Na+ (Caterina

et al., 1997). TRPV1 is thermosensitive, mildly voltage depen-

dent, and sensitive to several toxins and irritants such as capsa-

icin, which is the active ingredient in chili peppers (Caterina et al.,

1997). The channel is a tetramer with each subunit having six

transmembrane (TM) segments, and the last two TMs form the

central pore domain through which ions flow (A). The pore has
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two constriction zones: one at the selectivity filter composed of

residues GMGD, and a second hydrophobic gate near the cyto-

plasmic side of themembrane where the TM6 helices cross (Liao

et al., 2013). TRPV1 agonists can induce large conformal

changes, opening one or both gates (Cao et al., 2013). The

most open conformation of the channel was recently determined

via electron cryomicroscopy in the presence of a vanilloid

agonist resiniferatoxin (RTX) and double-knot toxin (DkTx) (Cao

et al., 2013; Liao et al., 2013).

The channel structure (PDB: 3j5q) was loaded into APBSmem

and then new features in the Orientmenu were used to translate

the channel �20 Å along the z axis and rotate by 180� about the
x axis, followed by a 45� rotation about the z axis. Next, we chose

a smoothed molecular surface representation for the protein

(Nina et al., 1997), and the SWANSON parameter set for the

atomic radii and charges (Swanson et al., 2007), since the dielec-

tric smoothing inherent in thismethod generally gives rise to non-

rugged ion energy profiles. Parameterizing the PDB file to create

what is known as a PQR file is quite easy now that we have

bundled PDB2PQR into the APBSmem distribution (Dolinsky

et al., 2004). For cases III–V, we use the PARSE charge and radii

set to parameterize the proteins, since that model was specif-

ically developed to explore the free energy of partitioning be-

tween aqueous and non-polar environments (Sitkoff et al.,

1994). The upper and lower boundaries of the membrane must

be set by hand in the graphical user interface (GUI) for the protein

of interest (Figure 1), after which APBSmem edits the local

dielectric, charge, and ion accessibility around the protein to

include the presence of themembrane for electrostatics calcula-

tions. The presence of aqueous cavities makes it difficult to

unambiguously identify the membrane protein boundaries

when adding the membrane. This task is particularly difficult

for channels containing fenestrations that connect the inner

pore directly to the mid-plane of the bilayer, such as the

voltage-gated sodium channels (Payandeh et al., 2012; Shaya

et al., 2014; Zhang et al., 2012) (Figure 2B). Programs exist for

detecting cavities in proteins (Smart et al., 1996; Voss and Ger-

stein, 2010); however, detection can also be difficult when the

water pathways are convoluted and the protein lacks symmetry,

in which case more computationally demanding methods are

needed (Adelman et al., 2014). To this end, we use a six-way

flood-filling method illustrated in Figure 2A, which starts from a

‘‘seed’’ point known to be within the membrane and then tests

surrounding regions to determine whether they are within the
–1537, August 4, 2015 ª2015 Elsevier Ltd All rights reserved 1527
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Figure 2. Automatic Detection of Aqueous

Channels

(A) Membrane-flooding method. Protein is orange,

solution white, initial membrane boundaries black

lines, and membrane blue. The membrane is

added iteratively in small units starting from an

initial seed at the outer boundary of the system.

Membrane will not flood protein fenestrations with

a vertical dimension less than t.

(B) Surface of the NaVAe1p sodium channel

showing large fenestrations in the hydrophobic

core of the membrane (top). If no threshold of lipid

penetration is set, membrane fills the central

aqueous cavity of the channel (blue surface, bot-

tom left); however, for t = 8 Å, the membrane will

not penetrate into aqueous cavities (bottom right).

A B

Figure 3. Ion Stepping for Potential Energy Profiles through TRPV1

(A) Molecular image of the fully open TRPV1 tetramer bound to RTX and DkTx

(PDB: 3j5q) colored by chain and embedded in a low-dielectric, ion-imper-

meable membrane. The upper and lower leaflets of the membrane are pale

gray surfaces. Asterisks highlight positions along the channel that correspond

to energy minima in (B).

(B) Calcium ion solvation energy through TRPV1. The upper two minima are in

the selectivity filter, the third from the top is in the cavity, and the bottom

position is near the inner gate.
membrane boundaries and external to the protein. The entire

membrane is drawn by expanding from this seed in an iterative

manner. An additional threshold can be set that prevents expan-

sion into holes smaller than a vertical thickness of t (Figure 2B).

Here, we use a value of t = 8 Å, which roughly approximates

the size of a lipid molecule, and this value successfully allows

for the proper identification of aqueous cavities.

The final membrane-embedded protein is shown in Figure 3A

with the corresponding membrane boundaries. We then used

the new Ion/Step ion function to create a Ca2+ ion and move it

along the z axis through the center of the pore from �40

to +80 Å. A series of calculations were initiated along the path

to determine the electrostatic component of the free energy,

DGelec in Equation 2, for each position (Figure 3B). Parameter

values for all calculations are listed in Table 1. The energy profile

is marked by asterisks corresponding to locations of interest,

and the positions are also identified on the structure (from top

to bottom): two minima in the selectivity filter, one minimum in

the central cavity between both gates, and one location near

the lower gate. These positions most likely reveal regions

of the channel involved in selectivity or function, which we

explore in more detail in case II. Additional technical aspects of

the calculation concerning timings, the choice of molecular sur-

faces, linear versus non-linear solutions, and grid spacing are

discussed in the Supplemental Information.

Case II: Contribution of Individual Residues to the
Electrostatic Interaction
Specific residues often play a crucial role in determining protein

function by stabilizing bound ligands, facilitating ion permeation,

or providing structural integrity through salt bridge interactions.

While several phenomena contribute to stabilization, electro-

statics is often a key factor, and in some cases it can be the

dominant term. With this in mind, it is useful to determine the

contribution of a particular residue to an electrostatic interaction,

and this information can help interpret structural information to

guide future experiments, as reported by Robertson et al.

(2008) in their work on inward rectifier channels. The technical

details for isolating electrostatic interaction energies between

ions or small molecules with specific residues in a protein can

be found in the Experimental Procedures and Supplemental

Information.

Here, we highlight the utility of APBSmem’s ability to dissect

the electrostatic contribution of each residue by re-examining
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Ca2+ permeation through TRPV1. As described in case I, the

ion experiences energy minima at four locations in the channel

(asterisks in Figure 3B), andwe identified the top five amino acids

that interact most strongly with the ion at each of these positions

(vertical dashed lines in Figures 4A–4D). The interaction energy

of these residues with the ion is plotted throughout the channel

to reveal the spatial extent of their influence. The channel with

the ions (red) at each of the four positions is shown to the right

of each profile. Not surprisingly, charged residues contribute

the most to the electrostatic interaction energy. However, this

is not always the case, as the carbonyl group of G643 plays an

important role in stabilizing the cation in the narrow portion of

the filter (Figure 4B), which is observed for potassium channels.

The ease with which APBSmem identifies these crucial residues

through these calculations provides a convenient and rational

means to select targets for mutational and functional studies.

Many of the residues in Figure 4 were previously shown to play

a role in conduction. Counterintuitively, Liu et al. (2009a) demon-

strated that a basic residue, K639, is essential for cation conduc-

tion, and that neutralization (i.e., K639Q) reduces current. Our

calculations reveal that K639 destabilizes permeating ions

more than any other residue in the channel, offsetting the deep
l rights reserved



Table 1. Input Parameters

Molecule TRPV1 (3j5q) VDAC (3emn) LeuT (2a65) Ste6p*

Force field SWANSON PARSE PARSE PARSE

Counterions ±1jej, 0.1 M, 2.0 Å ±1jej, 0.1 M, 2.0 Å ±1jej, 0.1 M, 2.0 Å ±1jej, 0.1 M, 2.0 Å

Temperature (K) 298.15 298.15 298.15 298.15

Grid dimensions 161 3 161 3 161 161 3 161 3 161 161 3 161 3 161 161 3 161 3 161

Coarse grid size (Å3) 320 3 320 3 320 300 3 300 3 300 300 3 300 3 300 300 3 300 3 300

Medium grid size (Å3) 160 3 160 3 160 120 3 120 3 120 120 3 120 3 120 120 3 120 3 120

Fine grid size (Å3) 64 3 64 3 64 60 3 60 3 60 60 3 60 3 80 60 3 60 3 60

Protein dielectric 2 2 or 8 2 or 8 2

Membrane dielectric 2 2.0 2.0 2.0

Headgroup dielectric 80 80 80 80

Solvent dielectric 80 80 80 80

Membrane thickness (Å) 42.5 39.9 42.0 39.9

Membrane bottom (Å) �19.0 �19.95 �21.0 �19.95

Headgroup thickness (Å) 8.0 8.0 9.0 8.0

Upper/lower exclusion radii (Å) 16/13 18.5/18.5 12/12 12/12

Grid center Origin Origin Origin Origin

Solution method Npbe Npbe Npbe Npbe

Boundary condition Zero Zero Zero Zero

Membrane potential (mV) 0 0 0 0

Charge model Spl2 Spl2 Spl2 Spl2

Surface model Spl4 Mol Mol Mol

Surface spline width (Å) 0.3 NA NA NA

Solvent probe radius (Å) NA 1.4 1.4 1.4

Surface sphere density (Å�2) NA 10 10 10

Ion initial position (Å) (0, 0, �60) NA NA NA

Ion final position (Å) (0, 0, 60) NA NA NA

No. of ion steps 100 NA NA NA

NA, not applicable.
energy well created by acidic amino acids that would otherwise

trap Ca2+. This result supports the hypothesis that decreased

single-channel conductance in the K639Q channel results from

longer Ca2+ dwell times in the primary binding sites. Stabilization

in the selectivity filter is dominated byD646, E636, and to a lesser

extent E648 (Figures 4A and 4B). Indeed, mutations that

neutralize D646, E648, and E651 reduce Ca2+ permeability

(Chung et al., 2008; Garcia-Martinez et al., 2000; Samways

et al., 2008; Welch et al., 2000), and result in a loss of Ca2+ selec-

tivity with respect to Na+ (Samways et al., 2008). A more recent

study showed that D646, E648, and E651 provide a strong Ca2+

binding site (Samways and Egan, 2011), which is in agreement

with the deep electrostatic well shown in Figure 3B, but

APBSmem does not reveal an electrostatic role for E651. Unlike

the other acidic residues, E636Q causes a significant increase in

the agonist induced fraction of total current carried by Ca2+

(Samways and Egan, 2011). It is often difficult to determine the

kinetic properties of a channel, such as conduction rate and

non-equilibrium selectivity, from equilibrium free energy profiles.

However, these profiles can be coupled with simple kinetics

models to reveal estimates of single-channel flux and differential

flux for different ions, thus providing deeper mechanistic insight

into how residues control channel properties.
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Data suggest the existence of an ion binding site deeper in the

pore than the ones stabilized by D646/E648/E651 in the filter

(Chung et al., 2008). Our calculations show that the minimum

in the central cavity at 17.6 Å is slightly more stable than the other

sites, and the top contributor at this position is D576 (Figure 4C).

Previously, the charge at this position was recognized as being

important for capsaicin-dependent activation (Boukalova et al.,

2010), but to our knowledge its importance in ion stabilization

had gone unnoticed. We suggest that mutations at D576 may

change channel conduction properties. Together, APBSmem

provides an automated pipeline to gain inferences about new

protein structures in which critical residues may not yet have

been identified.

Next, we explored the influence that the protonation state of

particular acidic residues had on the very stable energy profiles

in Figure 3B. Using patch-clamp photometry and site-directed

mutagenesis, Samways et al. (2008) demonstrated that proton-

ation of residues D646, E648, and E651 significantly reduces

the fraction of total current carried by Ca2+ in a manner indistin-

guishable from pH-dependent loss of selectivity, hinting at a

mechanism for pH-dependent loss of Ca2+ selectivity in which

these residues become protonated. They later estimated that

the D646N/E648Q/E651Q triple mutant lacked any selectivity
–1537, August 4, 2015 ª2015 Elsevier Ltd All rights reserved 1529
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Figure 4. Critical Residues Contributing to

the Electrostatics of Ion Permeation

through TRPV1

The top five residues interacting with the perme-

ating ion (by absolute value) at each of the posi-

tions (A, 32 Å; B, 24.8 Å; C, 17.6 Å; and D, 2 Å)

identified in Figure 3. The vertical dashed line is the

ion position of interest at which the rank order was

compiled, but interaction strengths are plotted

through the entire channel. Themolecular image to

the right of each graph shows the ion (red sphere

with asterisk) at the z position corresponding to the

dashed line. TRPV1 is yellow, with impactful resi-

dues rendered in stick mode. For clarity, only two

subunits of the channel are represented, and a

Ca2+ ion is pictured at all four positions for

perspective, but calculations are performed with

only a single ion in the channel.
for Ca2+ over Na+ (Samways and Egan, 2011). Our initial calcula-

tion showed that D646 ismost important for ion stabilization, and

since TRPV1 is a tetramer, there are four copies of this residue.

We protonated each in turn and recomputed the corresponding

Ca2+ and Na+ profiles. To facilitate such calculations, we created

a dialog box so that charge states for individual residues can be

set prior to each calculation using the integrated PROPKA plug-

in (Li et al., 2005; Olsson et al., 2011). In the Assign charge states

section of the GUI a button exists to select any amino acid in the

protein, identifying them by their chemical name, residue num-

ber, and chain ID.

Neutralization of all four D646 residues results in a decrease in

Ca2+ binding energy of 6.8 kcal/mol at the most extracellular site

(32.0 Å) and an extracellular shift in the position (Figure 5A). The

sites at 24.8 and 17.6 Å are also destabilized, but by a much

smaller amount: 4 and 0.4 kcal/mol, respectively. Protonation

changes in the protein can therefore dramatically influence bind-
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ing energy and ion dwell times at posi-

tions along the pore. In addition, we

carried out the electrostatic free energy

calculations on a sodium-like cation (Fig-

ure 5B). Even when all four D646 residues

are charged, the binding energy is much

smaller due to the reduced valency of

sodium, and the most extracellular site

is barely present. Correspondingly, pro-

tonating D646 has less of an impact on

the energy profile, and a rough compari-

son of the binding energy changes at

each site reveal an energy difference

between Ca2+ and Na+ of �4.5, �2.3,

and �3.7 kcal/mol prior to protonation

and 1.7, 0.4, and �3.4 kcal/mol after full

protonation at the extracellular filter site,

intracellular filter site, and the cavity site,

respectively (Figure 5C). Thus, the elec-

trostatic changes alone show a dramatic

loss of binding energy for Ca2+ compared

with Na+ when the filter sites are proton-

ated in response to a drop in pH. These
calculations corroborate the loss of selectivity as the pH de-

creases, as reported previously (Chung et al., 2008; Samways

and Egan, 2011; Samways et al., 2008).

Case III: Determination ofMembrane-Induced pKa Shifts
The protonation state of a residue can be influenced by the local

electrical environment, changes in pH (as discussed in case II),

and the dielectric environment. There is significant literature

centered on the use of continuum electrostatics for predicting

pKa shifts of residues, since charge changes can impact protein

structure, ligand binding, and protein-protein interactions (see

Alexov et al., 2011), and earlier studies have used solutions to

the PB equation to explore pKa shifts in the presence of the

membrane for membrane proteins such as bacteriorhodopsin

(Bashford and Gerwert, 1992) and outer membrane porins (Kar-

shikoff et al., 1994). When a charged group moves from a high

dielectric environment, like water, into a low-dielectric medium,



A B C Figure 5. Selectivity Is Influenced by Pro-

tonation State

(A and B) Ion stepping profile with zero to four

D646 residues neutralized for Ca2+ and Na+,

respectively. Note that the energies near 32 Å for

both ions become comparable once all D646

residues are neutralized.

(C) Energy difference between profiles shown in (A)

and (B). This energy is the Ca2+ energy minus the

Na+ energy.
such as the bilayer core, there is an electrostatic penalty, which

can be thought of as the energy associated with stripping away

polar water molecules from the protein. Neutralizing the residue

can mitigate this energetic cost, and if the resulting energy

decrease is greater than the free energy of ionization, the group

will likely be neutral in the membrane. As shown in Figure S1, we

calculate these shifts using two thermodynamic cycles for

(de)protonation of a residue of interest in solution (DpKa
1, cycle 1)

and a cycle corresponding to a change in charge state in the

membrane (DpKa
2, cycle 2). PROPKA is used to compute the

shift along cycle 1 (Li et al., 2005; Olsson et al., 2011), and

APBSmem is used to estimate the shift due to the membrane

using the PB approach developed by Honig and co-workers

(Yang et al., 1993) as described in the Supplemental Information.

Thus, the pKa of a residue is given by

pKa =pK0
a +DpK1

a +pK2
a ; (Equation 3)

where pKa
0 is the experimentally determined pKa of the isolated

residue. APBSmemwill calculate the DpKa of a single residue, or

will provide a rank-ordered list of residues most likely to be

shifted based on a single, heuristic approximation presented

next.

Here, we demonstrate APBSmem’s DpKa calculator with

mVDAC1 and LeuT, for which timings and memory usage can

be found in Table S1. As an initial evaluation, we ran a single sol-

vation energy calculation for mVDAC1 with all residues set to

standard protonation states at pH 7 to obtain the per-residue

components of the solvation energy (Figure 6A). For these calcu-

lations, we subtract the total fixed-charge energy of mVDAC1 in

solution from the membrane-embedded value and report the

per-residue contribution. While not a direct indicator of DpKa,

large energy values might be reduced if the residue is neutral-

ized. This quick calculation singled out E73 and K110 as having

the largest solvation energies. The side chain of E73 is oriented

toward the hydrophobic core of the membrane, as suggested

earlier by De Pinto et al. (1993), while K110 points toward the

bilayer at the headgroup-core interface (Figure 6C). Figure 6B

shows membrane-induced residue pKa shifts for all R, K, D, E,

Y, and C residues in mVDAC1 (DpKa
2), assuming a protein

dielectric of 2 and 8, since it is often debated which dielectric

value is most appropriate (Kukic et al., 2013). As predicted by
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the fixed energy solvation values, both

E73 and K110 have the most profound

shifts, regardless of the protein dielectric

constant employed. The modified pKa of

E73 and K110 are 25.37 and �0.87,

respectively (Table 2). Values above 7
indicate protonation at neutral pH while values below 7 indicate

a lack of protonation; thus, we predict that K110 and E73 are

both neutral. Our findings corroborate recent molecular dy-

namics (MD) simulations showing that E73 causes bending

and water penetration into the membrane when charged (Villin-

ger et al., 2010). However, simulations have not reported depro-

tonation of K110 (Choudhary et al., 2014; Noskov et al., 2013; Rui

et al., 2011; Villinger et al., 2010), potentially due to electrostatic

compensation caused by snorkeling into the headgroups.

The per-residue solvation energies for the LeuT transporter

reveal that K288 is an outlier (Figure 6D). Themembrane-induced

pKa shift is �12.64 (Figure 6E), indicating that it is most likely

neutral, which is consistent with its position in the bilayer core

(Figure 6F). Not surprisingly, MD simulations with K288 charged

result in membrane deformations, water penetration, and mem-

brane thinning at the site (Mondal et al., 2013, 2014), and these

deformations could help keep the residue charged (Callenberg

et al., 2012; Li et al., 2008; Mondal et al., 2013, 2014; Yoo and

Cui, 2008).

We wish to emphasize that the membrane-induced pKa shifts

described here are a first-order approximation of a more com-

plete statistical-mechanical treatment, which accounts for the

interaction ofmultiple charged sites in all possible ionization con-

figurations (Yang et al., 1993). This full treatment can be done

using the shell scripting feature with APBSmem, but except for

the smallest proteins this calculation can be extremely time

consuming; thus, it is useful to consider solving this problem

with approximatemethods (Bashford andKarplus, 1991; Tanford

and Roxby, 1972) or Monte Carlo-based approaches (Beroza

et al., 1991). Furthermore, charged side chains are often able to

reduce their electrostatic penalty either by snorkeling into the

headgroup region or by forming hydrogenbondswith nearby res-

idues that would otherwise not form if the protein were in

aqueous solution. Thus, in addition to exploring the full ensemble

of possible titration states, one would also need to optimize side-

chain conformations to obtain a more accurate pKa.

Case IV: Electrostatic Survey of Membrane Proteins of
Known Structure
We combined the automatic membrane detection algorithmwith

command-line scripting to expand our per-residue solvation
2015 Elsevier Ltd All rights reserved 1531
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Figure 6. Membrane-Induced pKa Shifts

(A) mVDAC1 (PDB: 3emn) per-residue solvation

energy contributions.

(B) Membrane-induced pKa (DpKa
2) shifts for

mVDAC1 calculated with the protein dielectric set

to 2 (plus signs) or 8 (circles).

(C) Image of mVDAC1 showing E73 poking into the

membrane and K110 in the headgroup.

(D) LeuT (PDB: 2a65) per-residue solvation energy

contributions.

(E) Membrane-induced pKa shifts for LeuT with the

protein dielectric set to 2 (plus signs) or 8 (circles).

(F) LeuT showing K288 poking out into the

membrane.

Table 2. Predicted pKa Shifts for Select Charged Groups

Protein Residue Calculation Method pKa

mVDAC1 Glu73 pKa
0 isolated amino

acid in solution

Experiment 4.50

DpKa
1 in protein in

solution

PROPKA 0.31

DpKa
2 solution to

membrane

APBSmem 20.74

modified pKa Equation 3 25.55

mVDAC1 Lys110 pKa
0 isolated amino

acid in solution

Experiment 10.50

DpKa
1 in protein in

solution

PROPKA �0.26

DpKa
2 solution to

membrane

APBSmem �11.03

modified pKa Equation 3 �0.79

LeuT Lys288 pKa
0 isolated amino

acid in solution

Experiment 10.50

DpKa
1 in protein in

solution

PROPKA �0.20

DpKa
2 solution to

membrane

APBSmem �12.64

modified pKa Equation 3 �2.34

Membrane dielectric is 2 for all calculations.
energy analysis to 1,614 multi-pass membrane proteins avail-

able in the OPM (Orientations of Proteins in Membranes) data-

base (Lomize et al., 2006). For each protein, we identified

residues that incurred a 10-kcal/mol or greater electrostatic

penalty for residing in the membrane, assuming standard pro-

tonation states at pH 7. We used the membrane thicknesses

determined by OPM for each protein. While most membrane

proteins have no residues (41%) or one residue (15%) in viola-

tion, APBSmem identified 707 proteins that have five or more

residues in violation (44%). For instance, the method correctly

identified all 12 copies of the titratable rotor site (D61) on the rotor

domain of the F0-ATPase (PDB: 1c17), whose protonation is

crucial for ion transport (Rastogi and Girvin, 1999). In Figure 7A,

we picture three of the top five structures with the most viola-

tions: the KvAP voltage-gated potassium channel (PDB: 2a0l;

Jiang et al., 2003) with 52 penalties, the capsaicin-bound

TRPV1 channel (PDB: 3j5r; Liao et al., 2013) with 25 penalties,

and the mechanosensitive channel of large conductance MscL

(PDB: 3hzq; Liu et al., 2009b), with 24 penalties. The physiolog-

ical relevance of the KvAP structure is not clear (Cohen et al.,

2003) and many of the high-energy residues are buried deep in

what would be the core of the membrane, but offending residues

are located near the headgroup interface for both MscL and

TRPV1. It is possible that minor membrane bending could

accommodate the residual hydrophobicmismatch for these pro-

teins. In the future, we will explore membrane-bending effects

with our implicit membrane-bending model (Callenberg et al.,

2012).

We next categorized the proteins by family using the Mpstruct

database (http://blanco.biomol.uci.edu/mpstruc). Figure 7B

shows the proportion of a-helical structures evaluated that had

at least five residues with electrostatic insertion penalties greater

than 10 kcal/mol for the top 20 families. The majority of these

groups are transporters and ion channels, but we also identified

families involved in the electron transport chain and light harvest-

ing. For example, APBSmem indicates large penalties for E78

and R207 in cytochrome b6f, which line the proton transfer

pathway (Hasan et al., 2013). Thus, a-helical proteins that

move charge across membranes appear to have an increased

number of charged residues in the transmembrane region that

are energetically costly. In contrast, b-barrel proteins generally

have fewer residues with large electrostatic penalties. However,
1532 Structure 23, 1526–1537, August 4, 2015 ª2015 Elsevier Ltd Al
many of these proteins also facilitate charge movement, and we

hypothesize that the large water-filled cavities found in porins

reduce the electrostatic fields and corresponding energy pen-

alties. Only the PagP outer membrane palimitoyl transferase

(PDB: 1mm4; Hwang et al., 2002) returned five or more high-

energy residues, and these residues are located on the loops

of the barrel and at the headgroup-core interfaces. We found

only a very weak correlation (R2 < 0.1) between the resolution

of the structures and the number of electrostatically unfavorable

residues for a-helical proteins, and there was no correlation for b

barrels (Figures S2A–S2E). That said, the five structures with the

highest number of reported residues have resolutions greater

than 3.2 Å.

Finally, we categorized the total number of residues with large

electrostatic insertion penalties for both a-helical (Figure 7C) and
l rights reserved
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Figure 7. Electrostatic Scan of Multi-pass

Membrane Proteins

(A) Three of the structures with the largest number

of electrostatically unfavorable residues: KvAP,

TRPV1, and MscL (PDB: 2a0l, 3j5r, and 3hzq,

respectively). Residues with greater than 10 kcal/

mol electrostatic insertion penalty are shown in red

licorice, with the total number of offending resi-

dues given in parentheses. The water-headgroup

and headgroup-tail interfaces are shown as green

and white surfaces, respectively.

(B) Proportion of a-helical structures with five or

more residues characterized as electrostatically

unfavorable. Families are defined according to the

Mpstruct database, and we excluded families with

fewer than three structures used in the final cal-

culations. The total number of structures analyzed

for each family is given in parentheses.

(C and D) Total number of electrostatically unfa-

vorable residues for a-helical and b-barrel pro-

teins, respectively. In total, calculations involved

794 a-helical proteins and 215 b-barrel proteins.
b-barrel (Figure 7D) proteins. As expected, the majority of iden-

tified residues are charged, and a-helical proteins contain

more basic residues while themost prevalent residue in b barrels

is aspartate. Clearly many of these residues will be neutralized in

the membrane, but we note that some residues we identified are

not titratable. For example, the backbone of residue S2 in mito-

chondrial cytochrome c oxidase (PDB: 2zxw; Aoyama et al.,

2009) is exposed to the membrane core, giving the residue an

electrostatic penalty of 11.0 kcal/mol. Table S2 contains the

full list of residues with large solvation energy penalties greater

than or equal to 10 kcal/mol, and details on the calculations

can be found in the Supplemental Information.
Case V: Prediction of Membrane Protein Insertion
Energies
Next, we use APBSmem to explore the stability of proteins

in the membrane. There are several computational methods

available to quantitatively assess the energy of partitioning

from water into the membrane, including computationally

expensive fully atomistic MD simulations (Dorairaj and Allen,

2007; MacCallum et al., 2007), more tractable physics-based

approaches (Ben-Tal et al., 1996; Lomize et al., 2006), and

statistical potentials (Bernsel et al., 2008; Schramm et al.,

2012). We employ the method outlined by Honig and co-

workers, which assumes that the non-polar energy of insertion

(DEnp) is proportional to the surface area of the molecule (Sitk-

off et al., 1994):

DEnp = a$ðAmem � AsolÞ; (Equation 4)

where Amem is the solvent accessible surface area (SASA) of the

protein or molecule in the membrane and Asol is the SASA in
Structure 23, 1526–1537, August 4, 2015 ª
solution, and a = 0.028 kcal/mol/Å2 is a

constant of proportionality. Both areas

are calculated by APBSmem using a call

to the external program MSMS (Sanner

et al., 1996), which must be separately
downloaded and installed locally. APBSmem includes three

models for calculating DEnp: (1) all surface atoms between the

upper and lower leaflets are included in the calculation of

Amem; (2) only atoms in the hydrophobic core of the membrane

are included; or (3) the constant a in the headgroup regions is lin-

early scaled from 0.28 kcal/mol/Å2 to zero as the z position of a

buried atom approaches themembrane-water interface from the

headgroup-core interface. The latter model is consistent with the

observation that water penetration falls off linearly in the head-

group region (Nagle and Tristram-Nagle, 2000), and this is the

model we employ here.

Predicting the relative stability of membrane-spanning do-

mains is critical in understanding the balance between mem-

brane protein biosynthesis and quality control. As integral

membrane proteins are translated and inserted into the ER, their

TMs must adopt the proper topology and interact correctly with

subsequent TMs to ensure native folding and function (Skach,

2009). Failure to fold can result in protein destruction by ER-

associated degradation (ERAD), a quality control pathway that

triages misfolded proteins (Needham and Brodsky, 2013).

Folding of multi-pass membrane proteins is highly problematic

due to the number of membrane-spanning domains and the

complexity of intermembrane interactions, especially for ATP

binding cassette (ABC) transporters, which possess 12 TMs

and two large cytoplasmic nucleotide binding domains (NBDs).

Indeed, destabilizing mutations within ABC transporters lead to

a number of diseases (Guerriero and Brodsky, 2012).

A model misfolded ABC transporter is a truncated form of the

yeastmating pheromone transporter Sterile 6 (Ste6p*). Following

translation, wild-type Ste6p* traffics to the plasma membrane;

however, a 42-amino-acid truncation in the second NBD

(NBD2) results in ER retention and destruction by the ERAD
2015 Elsevier Ltd All rights reserved 1533
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Figure 8. Membrane Protein Insertion

Energies

(A) Superposition of homology model of Ste6p*

2TM construct (yellow) on the P-gp template

structure (green).

(B) Model of isolated TM2 from wild-type (yellow

on left) and poly-alanine/leucine construct (red on

right) with molecular surface showing amino acid

chemistry (white, hydrophobic; green, polar; blue,

basic). Coordinate system corresponds to (C)

and (D). The primary sequence of each construct is

shown at the bottom.

(C and D) Insertion energy heatmap for wild-type

TM2 (C) and the artificial hydrophobic TM2 (D). The

total energy consists of electrostatic and non-

polar terms. The most stable configurations are

fully inserted (q < 30�) or interfacial (q near 90�).
Minimum energy configurations of each orienta-

tion are depicted to the left and right, respectively.

The headgroup-water interface is pink and the

headgroup-core interface is white.
pathway (Loayza et al., 1998). To model ABC transporter TM

insertion, folding, and quality control, we created an internal

deletion of Ste6p* to remove all but the first two TMs, which

were then appended to the truncated NBD2. This species was

termed Chimera N*. When expressed in yeast cells, the native

TM2 in Chimera N* fails to partition into the membrane (data

not shown). However, proper topology is corrected by substitu-

tion of TM2 with an artificial poly-A/L hydrophobic stretch offset

by helix-terminating linkers (Hessa et al., 2007) (Figure 8).

Because a high-resolution structure of Ste6p* is lacking, we

created a homology model of the wild-type and mutant con-

structs based on the related P-glycoprotein (P-gp) ABC trans-

porter (PDB: 3g5u, 26% identity; Aller et al., 2009) (see

Supplemental Information and Figure S3 for details on model

construction). Superposing the 2TM model of Ste6p* (yellow)

on the P-gp transporter (green) reveals that both helices have

extensive interactions with other TM segments (Figure 8A),

which may explain why Chimera N* fails to adopt the correct

topology. To explore the energetic stability of the isolated wild-

type and artificial hydrophobic TM2 segments, we calculated

the sum of the non-polar (Equation 4) and electrostatic energies

(from Equation 1) for each segment at different positions in the

membrane, with each compared with their respective value in

solution. We used command-line scripting to rotate each

segment through a wide range of positions, including fully trans-

membrane, titled, and interfacial configurations, with the hypoth-

esis that the native TM2 sequence may be predisposed to adopt

an interfacial configuration, while the engineered TM2 may be

more stable in the fully inserted state. An energetic heatmap

was created for each helix by rotating 360� along the long axis

(f) and then pivoting the helix from 0� to 90� with respect to

the membrane normal (q) while pinning the N terminus as shown
1534 Structure 23, 1526–1537, August 4, 2015 ª2015 Elsevier Ltd All rights reserved
in Figure 8B. See the Supplemental Infor-

mation for a complete description of the

electrostatic energy and scripting.

As hypothesized, the native TM2 is

significantly more stably bound to the

membrane than in aqueous solution,
with nearly equal values in interfacial (�35 kcal/mol) and TM

configurations (�36 kcal/mol). The overall stability in or near

the membrane is not surprising given the hydrophobic character

of the primary sequence, and the similarity between these two

energetic values may explain why this segment fails to insert.

Meanwhile, the artificial hydrophobic TM2 segment is more sta-

ble in the TM (�43 kcal/mol) than the interfacial configuration

(�33 kcal/mol) due to the poly-A/L sequence. The 10-kcal/mol

increased stability of the TM configuration likely explains its cor-

rect topological insertion.

DISCUSSION

We have explored a diverse set of biological problems related to

the electrostatics and stability of membrane proteins. In doing

so, we used several new features of the APBSmem software

that significantly enhance its usability and power. The ability to

manipulate protein orientation and position coupled with the

bundling of PDB2PQR now makes it possible to initiate calcula-

tions entirely within APBSmem directly from a PDB file without

the use of external software packages. Added functionality for

ion placement and movement allows users to easily explore

the electrostatics of ion movement through channels. Moreover,

increased handling of energetic terms makes it possible to

extract specific interactions between protein residues and ions

or small molecules in the system, which helps identify amino

acids critical to permeation or binding. We also developed a

scheme to determine the membrane-induced shifts in residue

pKa values in combination with existing methods in the incorpo-

rated PROPKA software. Using newly added command-line

scripting, we compiled a comprehensive list of residues likely

to have altered protonation states for all integral membrane



proteins in the OPMdatabase. Finally, a more complete model of

membrane protein stability that includes non-polar energies can

now be calculated with APBSmem, since it interfaces with the

program MSMS. While other energetic terms such as protein

conformational change, entropy, and membrane distortions

are ignored, non-polar and electrostatic energies alone can pro-

vide a first approximation of protein stability. Thus, the ease and

speed of APBSmem coupled with its ability to predict changes at

the single amino acid level make it a first-line approach for

exploring the stability of membrane and membrane-associated

proteins.

Throughout this study we have assumed that the membrane

remains flat and undeformed, and there are instances where

this will not be true. An ongoing effort in our laboratory is to incor-

porate membrane deformations into a continuum framework

consistent with APBSmem (Callenberg et al., 2012), and future

releases will include this feature. In addition, the parameters

listed in Table 1 are based on typical continuum electrostatics

calculations. For example, the high dielectric value of 80 used

in the headgroups is inspired by fully atomistic simulations car-

ried out in the Feller laboratory (Stern and Feller, 2003), but

they are not intended to be applicable to all situations. The

APBSmemGUImakes it easy for researchers to explore different

values. In particular, it will be interesting to use APBSmem with

the flexibility provided through batch scripting to benchmark

known pKa shifts for membrane protein residues to identify

optimal model parameters and test quantitative aspects of our

method.

The latest free software version of APBSmem can be down-

loaded from http://apbsmem.sourceforge.net.
EXPERIMENTAL PROCEDURES

All calculations were carried out with APBSmem, which is a Java-based pro-

gram that aids in solving the PB equation in the presence of membrane-like

environments. It can be run from a GUI or from the command line using pre-

specified input files. PDB files were loaded into the software, and charge

models were set using the bundled PDB2PQR package. Non-standard proton-

ation states of specific residues were assigned with PROPKA, which is also

now bundled with APBSmem. Through the GUI interface calculation parame-

ters were set, including calculation type (ion solvation energy, gating charge/

voltage dependence calculations, membrane insertion energy, pKa shifts,

etc.), spatial dimensions and grid discretization, membrane/protein/solution

dielectric values, protein surface representation, and far-field boundary condi-

tions, as well as other parameters typical of molecular PB calculations. Once

all parameters are set, APBSmem calls APBS to generate an initial dielectric

environment map (ε), ion accessibility map (k), and explicit charge map (r),

based on the molecular coordinates and any explicit ions in solution. These

maps are then manipulated by APBSmem to include the presence of an im-

plicit membrane in the dielectric and ion accessibility maps, as well as the

charge maps if a membrane potential is imposed on the system. The Preview

button allows the user to quickly visualize the protein’s placement in the mem-

brane, which is crucial at this stage to ensure proper orientation in the mem-

brane with the desired membrane protein boundaries. APBSmem next calls

on APBS, again using the altered maps to numerically solve the PB equation

in Equation 1. This flow makes APBSmem operation transparent: after an

APBSmem calculation, calculations can be repeated without using APBSmem

by simply running APBS on the generated input files. An in-depth discussion of

the basic features of the software is provided in our original paper (Callenberg

et al., 2010).

Per-residue solvation energies in Figures 6 and 7 are calculated as the sum

of the fixed-charge energies for all residue atoms computed in the presence of

the membrane subtracted from the fixed-charge energy when the protein is in
Structure 23, 1526
solution. Per-residue ion interaction energies are calculated by summing the

per-atom fixed-charge energies over each atom in a residue. This energy value

is formally divergent because it evaluates the potential at the position of the

atoms, so APBSmem isolates the residue ion interaction energy by subtracting

the protein-protein energies. These per-residue interaction energies are saved

to a log file in the output directory and used to produce the curves in Figure 4.

pKa shifts are calculated from a set of thermodynamic cycles. We consider

two cycles: first, the energy required to protonate/deprotonate the residue of

interest in solution (cycle 1), and second, the energy required to protonate/

deprotonate the residue in the presence of the membrane (cycle 2). We use

PROPKA to compute the values along cycle 1. APBSmem solves the PB equa-

tion to determine the change in total electrostatic energy for inserting a protein

into the membrane with the residue deprotonated and the change in energy

with the residue protonated. This difference between these energies is used

to calculate the shift in pKa along cycle 2. Details of these cycles are further

described in Figure S1 and the Supplemental Information.

Homologymodels of the TM domains (TM1 and TM2) of the ABC transporter

Ste6p* described in case V were constructed with Modeller9v13 (Sali and

Blundell, 1993) using the P-gp transporter (PDB: 3g5u) as a template structure

and the alignment provided in Figure S3. Additional hand adjustments were

then carried out to close up gaps and maximally align the second TM regions.

The final alignment used for construction of the first two TM segments of

Ste6p* and the wild-type TM2 segment is shown in Figure S3. The mutant

TM2 segment was then constructed using the wild-type TM2 model as a tem-

plate. Please note that for the TM insertion energy calculations these align-

ments are not crucial, since we simply assume that both TM2 segments

take on roughly straight helical configurations.

The new features added to APBSmem that are used throughout this study

are more fully described in the Supplemental Information and include

enhanced PDB/PQR file processing, greater geometric control over proteins,

ions, and small molecules, automatic identification of the membrane, non-

polar energy calculations with MSMS, per-residue contributions to energies,

command-line scripting, and ligand solvation energy calculations.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Supplemental Calculation Methodology, three figures, and two tables and

can be found with this article online at http://dx.doi.org/10.1016/j.str.2015.

05.014.
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1 Supplemental Figures

Figure S1: Related to Figure 6. Thermodynamic cycle of residue protonation and mem-
brane insertion. The protonation state of a residue (blue) is affected by its incorporation
into a folded protein (gold) as well as the embedding of the protein into the low-dielectric en-
vironment of the membrane. The residue’s pKa change for the protein in solution (∆pK1

a )
is calculated using PROPKA. The second pKa shift resulting from insertion of the protein
into the membrane (∆pK2

a ) is calculated using APBSmem. These two pKa changes are
summed with the isolated pK0

a to yield the final pKa.
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Figure S2: Related to Figure 7. Summary data from the large survey of membrane pro-
teins.A,B, Number of electrostatically unfavorable residues over resolution for alpha-helical
and beta-barrel proteins, respectively. C,D,E, Number of electrostatically unfavorable
residues over resolution for amino acid secondary transporters, monovalent cation selective
channels, and multi drug efflux transporters, respectively.



                                  .......................

                                +++++++++++++++++++++++++

                                 ************************

3G5U    --------VSVLTMFRYAGWL-DRLYMLVGTLAAIIHGVALPLMMLIFGDMTDSFASVGN 

Ste6p*  MNFLSFKTTKHYHIFRYVNIRNDYRLLMIMIIGTVATGLVPAITSILTGRVFDLLSVFVA 

                                 ***********************

                                 ++++++++++++++++++++++

3G5U    VSKNSTNM-------------------------------SEADKRAMFAKLEEEMTT

Ste6p*  NGSHQ---GLDLGRIFYPYDVPDYAGYPYDVPDYAGSYPYDVPDYAAQCGPDPQLVQ

        ....................

           +++++++++++++++++++++++++

          ***********************

3G5U    YAYYYTGIGAGVLIVAYIQVSFWCLAAGR 

Ste6p*  RSMAVMALGAASVPVMWLSLTSWMHIPDI 

mutant  RSGGPGAAAALALALALALALAAAAGPGG

            ************************

             +++++++++++++++++

TM2

TM1

Figure S3: Related to Figure 8. Alignment between Ste6p* and P-gp transporter (PDB:
3g5u). The alignment of the first two transmembrane segments (boxed regions) was carried
out using ClustalW followed by adjustments by hand. The hydrophobic mutant protein
differs from Ste6p* only in TM2, and its sequence was therefore omitted from the first
two lines. Symbols above the sequences refer to the P-gp transporter, while symbols below
refer to Ste6p*. Dots are TM stretches of the 3g5u structure identified by inspection, *
indicates transmembrane segments identified with the program TMHMM, and + indicates
transmembrane segments identified with TMPRED.

Protein Atoms Grid dimensions Focus levels Grid spacing (Å) Memory Time
LeuT 4366 1613 2 0.375 2.27 GB 4 m 25 s
LeuT 4366 653 0 0.9375 363 MB 18 s
VDAC 2250 1613 2 0.375 2.26 GB 3 m 50 s
VDAC 2250 653 0 0.9375 347 MB 15 s

Table S1: Related to Figure 6. Timings for per-residue solvation energy calculations.

Table S2, related to Figure 7, can be found online in a separate spreadsheet as part of the
Supplemental Information.



2 Additional APBSmem Features

PDB file processing. Membrane protein PDB files are required for electrostatics calcu-
lations, and they can be obtained from many sources such as Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank (Berman et al., 2000), PDBe in Eu-
rope (Velankar et al., 2010), PDBj in Japan (Kinjo et al., 2012), Orientations of Proteins
in Membranes (OPM) database (Lomize et al., 2006), and many other sources, including
locally refined structures. PDB files lack atomic radii and charge state information and
also lack hydrogen atoms, all of which are crucial for electrostatics calculations. Previ-
ously, we required users to first convert PDBs to a PQR format. Now, we have integrated
the open source PDB2PQR software (Dolinsky et al., 2004) with APBSmem so that PDB
files can be read in, protonated, and assigned atomic radii and charges from one of several
different charge models. If a PDB file is loaded, APBSmem will present a pop up window
that will ask the user to chose a charge model (PARSE, SWANSON, CHARMM, AMBER,
PEOEPB, or TYL06), whether waters should be stripped from the PDB file, and which
molecular chains are to be used since many PDB files contain more than one protein. Ad-
ditional options can be selected such as whether protons should be moved (nodebump),
whether to perform optimization on hydrogen placement (noopt), whether to add a lig-
and to the PQR (ligand), and whether pKa states should be determined (with-ph=7.0 ).
The last option will be discussed more fully in Case III. More information on these op-
tions can be found PDB2PQR website: www.poissonboltzmann.org. A PQR file will be
generated and saved with the force field indicated in the filename. If a PQR file is loaded
from the beginning, APBSmem will not attempt to set the charge model. In our previous
calculations (Callenberg et al., 2010), we used the PARSE parameter set with a molecular
representation of the protein surface. This was due to the fundamental work by the Honig
lab on the role of electrostatics and non-polar interactions when small molecules partition
from water to lipid-like phases (Sitkoff et al., 1994). For Case I, we use a spline-based
representation of the protein surface invented by the Roux lab since it smooths dielectric
boundaries, producing more slowly varying energy profiles that are not highly dependent
on grid spacing (Nina et al., 1997). In particular, we use the SWANSON spline-based
parameters (Swanson et al., 2007).

Greater geometric control over proteins and ions. Proteins deposited in the
OPM database are oriented with respect to the z-axis and centered at the origin (Lomize
et al., 2006), but this is not the case for structures stored in most databases. APBSmem
requires that the membrane lies in the x-y plane, so we added a feature to automatically
align proteins to the z-axis under the menu item Orient . The Auto-orient function under
Orient will pick one of the principal axes of the molecule to align with the z-axis in an
attempt to correctly orient the protein in the membrane. The protein will also be translated
to the origin, and the transformed structure will be saved to a new file. The details of the
transformation are stored in the file header. In all cases, the Preview button must be
used after setting the desired membrane parameters to visualize the dielectric boundaries
of the membrane and how the protein is oriented in the membrane. Please see our previous
paper for more detail on this step and other GUI parameters (Callenberg et al., 2010). If
the desired position is not achieved, the Orient menu item provides options for arbitrary
rotations and translations of the protein for fine-tuning.

Ligand solvation energy calculation. APBSmem can now calculate the electro-
static transfer energy of a small ligand molecule. Addition of a ligand molecule is specified
as an option when converting a PDB to PQR file in APBSmem (ligand option). If this
option is selected, the user is prompted to provide a MOL2 file for the ligand. This file
provides the partial charges and bond connectivity of the ligand, and can be obtained from



the PRODRG server (Schüttelkopf and van Aalten, 2004). Once the PQR is generated,
the electrostatic transfer energy can be calculated by selecting Ligand solvation as the
calculation type and clicking Run .

Automatic identification of the membrane. APBSmem edits the local dielectric
environment around a protein to include the presence of the membrane for electrostatics
calculations. To do this, the dielectric, ion accessibility, and charge maps produced by
APBS are redrawn with membrane parameters provided by the user. Identifying where
the membrane lies is difficult since many proteins contain aqueous cavities that must be
ignored when adding the lipid bilayer. We added an automatic detection method that re-
quires minimal user input. Specifically, we use a six-way flood-filling method illustrated in
Figure 2A. Briefly, a three dimensional logical array specifies where the membrane should
be drawn, and the user provides only the upper and lower membrane boundaries in the
z-direction. An initial seed element within the membrane at the edge of the x-y plane,
far from the protein, is used as the starting point for the flood fill method (Figure 2A).
APBSmem expands the seed north, south, east, west, forward and backward, creating new
membrane elements of the array for any element inside the membrane defined by thick-
ness, d, and outside the protein. Thus, the provided membrane boundaries and dielectric
protein surface determined via APBS serve as the boundaries for the flood fill. The pro-
cedure is iterated for every new element of the array that becomes labeled as membrane
until no more elements are added. This array is then used to redraw the initial dielectric
maps produced by APBS to be used in the electrostatics calculations in the presence of a
membrane. However, this method may be confounded by channels that have fenestrations
that connect to the inner pore, such as the voltage-gated sodium channels (Payandeh et
al., 2012; Shaya et al., 2014; Zhang et al., 2012) (Figure 2B). Since flooding fills the pore
with membrane through these fenestrations (bottom left), we apply an additional thresh-
old that prevents expansion into holes smaller than a vertical thickness of t (8 Å). This
threshold allows for the proper identification of aqueous cavities, as shown in the bottom
right panel. The automatic membrane detection also makes it possible to systematically
carry out electrostatic calculations in an automated manner on large sets of proteins, as
discussed in Case III.

Non-polar energy calculations and per-residue energies A major energetic con-
sideration with respect to the stability of membrane proteins is the non-polar energy arising
from solvent reorganization when portions of the protein are buried in the bilayer. Sim-
ple non-polar energy models assume a linear dependence on the solvent exposed surface
area (Hermann, 1972; Lee and Richards, 1971). APBSmem now calculates the non-polar
energy (Enp) for all buried residues using the software MSMS, which is freely available
for academic use (http://www.scripps.edu/sanner) (Sanner et al., 1996). Upon starting
APBSmem, the user will be prompted to set the path to MSMS. [[2.4]] APBS can also
be used to calculate the nonpolar energy of a protein, and the user has the choice to use
APBS for this calculation instead. Additionally, APBSmem now provides the non-polar
and electrostatic energies for each residue in the protein, which aids in designing mutational
analyses.

Command line scripting. When coupled with a simple shell script to modify param-
eters in an input file – such as which protein to use for each calculation – APBSmem can
readily perform many calculations in a fully automated manner. The initial APBSmem
input file (file.in) can be generated using the GUI once parameters have been set. This
happens automatically during a run, or when the user selects the menu item File/Save .
This input file is a simple text file that can be opened up and edited for use in subsequent
command line calls to APBSmem, and is a valid ABBS input file. To run a calculation,
the user provides the input file and output directory (out-dir) on the command line: java



-jar apbsmem.jar file.in out-dir. Additionally, APBSmem can be run from the command
line without doing a full electrostatics calculation to: add an implicit membrane to a set
of APBS .dx files (java -cp apbsmem.jar apbsmem.DrawMembrane); modify the orienta-
tion of a PQR/PDB file (java -cp apbsmem.jar apbsmem.orient.Orient), or change
the charge state of a residue (java -cp apbsmem.jar apbsmem.AssignCharge). For the
later three commands, omission of further command line arguments causes APBSmem to
print usage information. Between calculations it may be advisable to delete the APBS map
files, as they can be quite large. Alternatively, if the map file type is changed from dx to
gz in the input file, APBS and APBSmem will work with compressed maps, reducing disk
usage significantly.

Other enhancements. APBSmem now supports additional APBS keywords to choose
the charge model (chgm), the surface model (srfm), and the spline width (swin), and
provides improved support for setting the geometric center (gcent) of the grid volume.
These keywords can be read from an APBS input file or set directly using the APBSmem
interface. For a typical APBS calculation, the charge density, dielectric constant and
ion accessibility maps are computed from a molecule in PQR format and from keywords
describing the solution dielectric (sdie), the molecular dielectric (pdie), discretization of
the charge distribution (chgm), charge, concentration, and radius for each ion species
(ion), and definition and parameterization of the solvent accessible surface (srfm , srad ,
sdens and swin). For example, the flags to the keyword chgm specify how the idealized
point charge of an atom in a PQR file is partitioned to nearby grid points in the charge
density map.

3 APBSmem Electrostatic Energy Calculations with
APBS

Adaptive Poisson-Boltzmann Solver (APBS) is open source software developed by the
Baker group (Baker et al., 2001) for electrostatic calculations in biomolecular systems.
APBS binaries, source code and documentation are available at www.poissonboltzmann.org.
The electrostatics model used by APBS is detailed in section 2 of Baker, Bashford, and
Case (2006). This supplement gives the explicit formulae used by APBS to calculate elec-
trostatic energies for various APBS input parameters according to the APBS version 1.3
source code.

3.1 APBS solution method

APBS uses a finite difference method to numerically solve the Poisson-Boltzmann equation
(Eq. 1 of main text) for the electric potential φ at points on a regular three dimensional
grid. This requires discretizing the physical properties of the system over the same grid,
and discretizing the boundary conditions on the grid boundary. Specifically, the free charge
density ρf (x), the dielectric constant ε(x), and the ion accessibility kappa(x) are discretized
over the grid and are stored in three dimensional arrays referred to as “maps”. The kappa
map should not be confused with the Debye-Hückel parameter κ (more on this below).
The other physical inputs to the solver are the temperature T , and details of the ions in
solution (charge zj , concentration n̄j , and radius for each ion species).

For a typical APBS calculation, the charge density, dielectric constant and ion accessi-
bility maps are computed from a molecule in PQR format and from keywords describing
the solution dielectric (sdie), the molecular dielectric (pdie), discretization of the charge
distribution (chgm), charge, concentration, and radius for each ion species (ion), and



construction of the solvent accessible surface area (srad , sdens, swin and srfm). For
example, the flags to the keyword chgm specify how the point charge of an atom in the
PQR file is partitioned to nearby grid points in the charge density map. See the APBS
documentation for more details on how the keywords above effect map generation.

Alternatively, APBS can read the maps from input files, skipping the map generation
step and proceeding straight to solving for the potential φ. APBSmem works by calling
APBS to generate and write maps, inserting a membrane by altering the dielectric, charge,
and ion accessibility maps, and calling APBS using the altered maps, thereby solving for
φ for a molecule in a membrane environment.

3.2 APBS energy equations and terms

For the non-linear Poisson-Boltzmann equation, APBS calculates the total electrostatic
energy from three components: the charge-potential interaction energy (or fixed charge
energy, Ef ), the dielectric polarization energy (Ed), and the counter-ion distribution energy
(or mobile charge energy, Em):

Etotal = 2Ef − Ed − Em

=

∫
d3x

(
ρfφ−

ε

8π
(∇φ)

2 − kT
∑
ionj

n̄je
−
Vj
kT

(
e−

ezjφ

kT − 1
))
. (S1)

The sum is over each counter-ion species j, where the number density of counter-ion species
j is n̄j . The potential Vj represents steric interactions between ion species j and atoms of
the molecule, and is part of the modified Debye-Hückel term κ̄(x):

κ̄2(x) =
4πe2

kT

∑
j

n̄jz
2
j e

−
Vj
kT , (S2)

where zj is the charge of species j in atomic units. APBS assumes that Vj is the same for
all ions in solution, and that the solvent accessible surface presents an infinite potential:
Vj = 0 outside the molecular surface, Vj =∞ inside the molecular surface. Thus, the steric
factor e−Vj/kT is one outside the molecule, and zero inside the molecule, and is represented
by APBS as the ion accessibility map kappa. See the APBS keyword srfm for details on
how the solvent accessible surface is defined.

In the linear limit, the mobile charge energy reduces to

Em =

∫
d3x

1

2
κ̄2φ2 (S3)

For linear media, the total energy is equal to the work required to assemble the charges:
Etotal = Ef = Ed + Em. This is not generally true for non-linear media. APBSmem sets
the APBS keyword calcenergy to the flag comps causing APBS to print Etotal, Ef , Ed,
Em, and the per-atom energy contribution Efa for each atom a.

3.2.1 Fixed charge energy

APBS reports the per-atom fixed-charge energy Efa for each atom a in the PQR file:

Efa =
1

2
qaΦa(ra), (S4)

where qa is the charge of atom a, and Φa(ra) is the trilinear interpolation of the three
dimensional solution array for the potential, φ[i, j, k], to the coordinates ra of atom a. If



the charge map is derived from a molecule input from a PQR file, the total fixed charge
energy is calculated as the sum over each atom in the molecule:

Ef =
∑

Atom a

Efa . (S5)

If instead a charge density, ρ[i, j, k], is supplied by specifying a charge map in the APBS
input file, such as in APBSmem calculations, APBS calculates the total fixed charge energy
as the volume integral of the charge density times the potential by the approximation:

Ef =
1

2
hxhyhz

∑
i,j,k

ρ[i, j, k]φ[i, j, k], (S6)

where hx, hy and hz are the x, y and z grid lengths, respectively.

3.2.2 Dielectric energy

The formula APBS uses for the dielectric energy term is

Ed =
1

2
hxhyhz

∑
i,j,k

{
εx[i, j, k] (φ[i+ 1, j, k]− φ[i, j, k])2 +

εy[i, j, k] (φ[i, j + 1, k]− φ[i, j, k])2 +

εz[i, j, k] (φ[i, j, k + 1]− φ[i, j, k])2
}
, (S7)

where εx, εy and εz are dielectric maps which are centered half a grid point in the x, y and
z directions, respectively, relative to the charge density and potential maps.

3.2.3 Mobile charge energy

For the non-linear Poisson-Boltzmann equation, the mobile ion energy term is evaluated
by summing over each ion species m:

Em =
1

2
kT hxhyhz

∑
ion m

∑
i,j,k

n̄m
(
e−zmφ[i,j,k]/kT − 1

)
. (S8)

For the linear case, the Debye-Hückel parameter κ̄ is taken to be constant, and ion acces-
sibility map, kappa, restricts the mobile charge energy calculation to outside of the solvent
accessible molecular surface:

Em =
1

2
hxhyhz

∑
i,j,k

κ̄2φ2[i, j, k] kappa[i, j, k]. (S9)

3.3 Case I: Ion transfer free energy

We downloaded the PDB structure (PDB: 3j5q) from RCSB, selected Ion solvation as the
calculation type in the GUI, and loaded the structure into PQR File 1 with the Browse
button. We then centered the channel with the following commands: Orient/Translate by
-20 Å in z, Orient/Rotate about x by 180◦, and then Orient/Rotate about z by 45◦. This
last rotation was done to better fit the simulation volume. We then set all parameters in
the GUI according to the information in Table 1, and we selected Preview to ensure that
the membrane interface was properly drawn around TRPV1 (light grey boundaries in panel



A). Rather than choosing a second PQR File 2, we created an ion from Ion/Create ion in
the menu with an initial position on the z-axis at -60 Å and the charge (+2) and radius
(1.03 Å) of a Ca2+ cation. Next, we selected Ion/Step ion and entered a final location in
the extracellular space +60 Å making a path with 100 steps.

3.4 Case II: Per-residue interaction energies with ions & small
molecules

APBSmem calculates the fixed charge energy for each residue R in a PQR file by summing
the per-atom fixed-charge energies (equation S4) over each of the n atoms in residue R:

ERf =

n∑
i=1

Efi =
1

2

n∑
i=1

qiΦP,I(ri), (S10)

where qi is the charge of the ith atom, ri is its position, ΦP,I is the electrostatic potential
of the protein-ion/small molecule system embedded in the membrane. This energy value
is formally divergent because it evaluates the potential at the position of the atoms, so
APBSmem isolates the residue-ion interaction energy by subtracting off the protein-protein
energies:

∆ERf =
1

2

n∑
i=1

qi (ΦP,I(ri)− ΦP (ri)) (S11)

where ΦP is the electrostatic potential of the protein embedded in the membrane without
the ion. These per-residue interaction energies are saved to a log file in the output directory.

3.5 Case III: Per-residue solvation energies

Per-residue solvation energies, ∆GenvR , are calculated as the difference of the per-residue
fixed-charge energies of residue R in the membrane EMf,R and in solution ESf,R:

∆GenvR = EMf,R − ESf,R.

=
1

2

n∑
i=1

qi
(
ΦM (ri)− ΦS(ri)

)
, (S12)

where the sum runs over the n atoms in residue R, and ΦM and ΦS are the electrostatic
potentials of the protein in the membrane and solution, respectively. For these calculations
interaction energies are reported in units of kcal/mol and written to a space-delimited
file. When multiple calculations are called at one time, which happens for an ion stepping
calculation, each new calculation is recorded as a new column. This text file can be directly
loaded into a spreadsheet or plotting program for further analysis, as below.

3.6 Numeric focusing

To accurately model the electrostatics in a volume, the boundary conditions need to be
well approximated. Typically this requires placing the boundary far away from any charges
in the system. Since APBS solves the Poisson-Boltzman equation on a regular three di-
mensional grid, placing the boundary far away from the region of interest means, due to
memory and time constraints, that the resolution may be worse than desired, i.e.: grid
spacings larger than structures of interest.



To increase resolution in the region of interest, APBS employs a method called focusing:
one or more focusing calculations may be performed after an initial calculation, with each
focusing volume being a subset of the volume of the prior calculation. The solution to
the Poisson-Boltzman equation for the potential at one level of focusing is used to set the
potential on the boundary of the volume at the subsequent level, after which the potential
in the interior is calculated.

Then to evaluate an energy term (such as the dielectric energy term) over the whole
volume, the term is evaluated over the finest grid available in each region of the volume.
Suppose for example that a calculation is performed using two focusing levels. Let the
initial solution be φ0 over total volume V0, the first focus level solution be φ1 over subset
V1, and the final focus solution φ2 over subset V2: V2 ⊂ V1 ⊂ V0. Then the energy term is
evaluated using φ2 over V2, φ1 over V1 \V2, and φ0 over V0 \V1. (A\B is the set difference:
A \B = {x ∈ A | x /∈ B}, i.e. the volume A excluding the volume B.)

Per-atom energies are reported for each atom at each focus level. APBS assigns atoms
outside the current focus volume a per-atom energy of zero. For these atoms, APBSmem
reports the energy at the smallest focusing volume containing that atom. In practice, this
will be that last focus level for which the per-atom energy is non-zero.

3.7 Technical notes on PB calculations

We wish to note a few technical details concerning the calculations. First, the choice in
atomic parameter set does not heavily influence the ion solvation energies when the ion
and channel are well hydrated, which is the case for large pores such as VDAC (Choudhary
et al., 2010). However, for TRPV1 the parameter set is very important when the ion
is less than a few Ångstroms from the protein. In these cases, the spline-based methods,
such as SWANSON, produce much smoother profiles along the pathway, especial in regions
where the ion approaches the protein surface. Regardless, it is important to remember that
the parameter set used must be properly matched with the surface representation for the
protein, i.e. PARSE with the molecular surface representation (mol) and SWANSON with
spline-based representations (spl2 or spl4 ). APBSmem does not let one choose parameters
that are incompatible with each other. At present, the membrane dielectric boundaries are
currently not smoothed. We will incorporate this feature into future releases. Second, it
is always best to use the non-linear Poisson Boltzmann method (npbe) over the linear
solver (lpbe), but this method requires longer calculation times. Moreover, when the
electrostatic potentials are small and energies are on the order of a kcal/mol the linear
solution is generally similar to the non-linear solution, and this is true of the OmpF profile
but not the TRPV1 profile. Finally, the number of grid points determines the fidelity of
the final solutions. Formally, one should carry out convergence testing, in which profiles
are plotted with increasing numbers of grid points in order to determine if the solutions
approach a constant value. A rule of thumb is that the grid spacing at the finest level
should be less than 0.5 Å in all directions.

The ion profile calculations in the main text are relatively fast, requiring approximately
7 to 8 minutes per ion location on a 2011 MacBook Pro using the parameters listed in
Table 1. At lower resolutions with 653 grid points, calculations take 30 seconds per step.
Thus, initial diagnostic estimates of the profiles in Figure 3 can be generated in less than
half an hour followed by production quality calculations at higher resolution (grid spacing
< 0.5 Å), which may then require about 12 hours.

We caution users that continuum methods can break down for narrow pores when
ions approach the protein surface; however, if care is taken and the results are not over
interpreted, valuable information can still be gleaned from the calculations.



4 Membrane Induced Changes in pKa Values

As shown in Figure S1, it is useful to calculate these shifts in terms of thermodynamic cycles.
We consider two cycles: first, the energy required to protonate/deprotonate the residue of
interest in solution (cycle 1), and second, the energy required to protonate/deprotonate
the residue in the presence of the membrane (cycle 2). We use the program PROPKA to
compute the values along cycle 1, and below we describe how to use APBSmem to estimate
the energies along cycle 2.

PROPKA uses an empirical method to quickly estimate pKa shifts based on the residue’s
solvent accessibility, hydrogen bonding, and short-range charge-charge interactions (Li et
al., 2005; Olsson et al., 2011). We call this shift along cycle 1 ∆pK1

a . While PROPKA
is fast and reliable, it is not equipped to handle changes in dielectric environment such as
moving into a membrane, and it does not account for long-range electrostatic interactions.
Yang and coworkers developed another method based on solutions to the PB equation to
calculate expected ∆pK2

a values. In this framework, the pKa of a charge group within a
protein is given by:

∆pKa = −γi∆∆Genvi 2.3kBT, (S13)

where ∆∆Genvi is the change in electrostatic energy associated with ionizing the group
in the protein versus alone in solution, and γi is -1 or 1 for an acidic or basic group,
respectively. While this method was intended for calculating protein-induced shifts, we
adapt it here to compute membrane induced pKa shifts along cycle 2, which we call ∆pK2

a .
To do this, APBSmem solves the PB equation to determine the change in total electrostatic
energy for inserting a protein into the membrane with residue i deprotonated, ∆Genvi (A),
and the change in energy with residue i protonated, ∆Genvi (AH). The membrane induced
energy shift, ∆∆Genvi , is then:

∆∆Genvi = −γi {∆Genvi (A)−∆Genvi (AH)} , (S14)

which determines pK2
a according to equation S13. The total modified pKa of each residue

is then:
pKa = pK0

a + ∆pK1
a + ∆pK2

a , (S15)

where pK0
a is the experimentally determined pKa of the isolated residue.

5 Homology Models of Ste6p*

Models of the transmembrane domains (TM1 & TM2) of the ATP-binding cassette (ABC)
transporter Ste6p* were constructed with Modeller9v13 (Sali and Blundell., 1993) using the
P-glycoprotein transporter (PDB: 3g5u) as a template structure and the alignment provided
in Figure S3. There are several ABC transporters whose structures have been solved, which
could have been used as templates; however, the sequence identities with Ste6p* are modest
with values ranging from 20-27%. Moreover, the transmembrane segments are even less
conserved. Among the best match for TM1 and TM2 is the P-glycoprotein transporter from
mouse (PDB: 3g5u), which has 7.7% and 14.8% identity, respectively. We initially used
ClustalW (Thompson et al., 1994) to align the sequences, but we also identified the TM
stretches independently with the programs TMHMM (Krogh et al., 2001) and TMPRED
(Hofman and Stoffel, 1993). Additional hand adjustments were then carried out to close
up gaps and maximally align the second transmembrane regions. The final alignment used
for construction of the first two TM segments of Ste6p* and the wild-type TM2 segment



is shown in Figure S3. The mutant TM2 segment was then constructed using the wild-
type TM2 model as a template. Please note that for the TM insertion energy calculations
provided in the main text, these alignments are not crucial since we simply assume that
both TM2 segments take on roughly straight helical configurations.

6 Insertion Energy Heat Map Construction with Com-
mand Line Scripting

We constructed insertion energy maps by repeatedly calling APBSmem in a shell script,
altering the orientation of the TM segments between each call. We initially aligned the
helices with their long axes in the z-direction, and chose a pivot point (Px, Py, Pz) at the
N-terminal end of the helices as the origin of rotations. Looping over values of φ, the angle
about the long axis, and θ, the angle away from the membrane normal, the shell script first
called APBSmem to create a PQR file with the protein in the new (φ, θ) orientation, and
then the script called APBSmem again to calculate the insertion energy.

Creating a PQR file in a new orientation was performed by a single call to APBSmem,
chaining together several orientation operations:

1. translating the protein by (-Px, -Py, -Pz) to put the center of rotation at the origin,

2. rotating the protein about the z axis by φ,

3. rotating the protein about the x axis by θ, and

4. translating the protein back by (Px, Py, Pz).

The above operation is performed using command line options: “-t -Px -Py -Pz -z φ -x θ -t
Px Py Pz”. Note that the italicized arguments are actual values, while the non-italicized
arguments are keywords. For example, for a pivot point of (0,0,10Å), and initial PQR file
named TM1.pqr, the full command line to rotate by φ = 60 degrees and θ = 45 degrees
may appear as:

java -cp apbsmem.jar apbsmem.orient.Orient -t 0 0 -10 -z 60 -x 45 -t 0 0 10 TM1.pqr

Usage information for orientation operations is printed if no command line arguments to
apbsmem.orient.Orient are specified.
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A. W. Schüttelkopf and D. M. F. van Aalten. PRODRG: a tool for high-throughput
crystallography of protein-ligand complexes. Acta Crystallogr., D60:1355–1363, 2004.

J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving the sensitivity
of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic acids research, 22(22):4673–4680, 1994.


	Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations
	Introduction
	Results
	Case I: Ion and Small-Molecule Placement and Manipulation for Computing Electrostatic Energy Profiles
	Case II: Contribution of Individual Residues to the Electrostatic Interaction
	Case III: Determination of Membrane-Induced pKa Shifts
	Case IV: Electrostatic Survey of Membrane Proteins of Known Structure
	Case V: Prediction of Membrane Protein Insertion Energies

	Discussion
	Experimental Procedures
	Supplemental Information
	Author Contributrions
	Acknowledgments
	References


