Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter.

C Hama, Z Ali and T B Kornberg

Genes Dev. 1990 4: 1079-1093
Access the most recent version at doi:10.1101/gad.4.7.1079

References
This article cites 50 articles, 11 of which can be accessed free at:
http://genesdev.cshlp.org/content/4/7/1079.refs.html

Article cited in:
http://genesdev.cshlp.org/content/4/7/1079#related-urls

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here

To subscribe to Genes & Development go to:
http://genesdev.cshlp.org/subscriptions

Copyright © Cold Spring Harbor Laboratory Press
Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter

Chihiro Hama, Zehra Ali, and Thomas B. Kornberg
Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143 USA

The Drosophila engrailed gene is expressed in the cells of the posterior developmental compartments. To investigate how the engrailed gene is regulated, chimeric genes consisting of fragments of the engrailed promoter and Escherichia coli lacZ were incorporated into the Drosophila germ line by P-element-mediated recombination. Fusion constructs with 7.5 kb of 5'-flanking sequence contain sufficient information to promote expression in most of the embryonic, larval, and imaginal posterior compartments; transformants with smaller fragments of the 5' region do not. Remarkably, of 20 independent transformants with constructs containing more than 1 kb of 5'-flanking DNA, 7 integrated in or around the engrailed locus. These strains inactivate engrailed function to varying degrees, and some express lacZ with a position- and temporal-specific program that is indistinguishable from the normal engrailed gene. Presumably, in these strains, lacZ is expressed in the context of the engrailed promoter.

[Key Words: engrailed, region-specific recombination, P element]

Received February 16, 1990; revised version accepted April 24, 1990.

When developmental compartments subdivide the Drosophila embryo, posterior compartment cells express the engrailed gene, and anterior compartment cells do not [DiNardo et al. 1985; Fjose et al. 1985; Kornberg et al. 1985; Karr et al. 1989]. Mutant phenotypes suggest that engrailed functions as a developmental switch in these cells: its presence establishes a posterior developmental state, whereas its absence defines an anterior one [Garcia-Bellido 1975; Morata and Lawrence 1975; Kornberg 1981a; Busturia and Morata 1988; Poole and Kornberg 1988]. Position-specific regulation of engrailed expression therefore appears to be both simple—either on or off—and essential to its function.

However, the structure of the engrailed gene suggests that its regulation is not simple. Its ~4-kb transcription unit is surrounded by extensive flanking DNA that is required for its normal expression [Drees et al. 1987]. Mutations that break the genes as much as 15 kb 3' or 25 kb 5' to the transcription unit are embryonic lethal alleles. Breakpoint mutations as much as 20 kb farther upstream also affect its function. In addition, molecular analysis indicates that sequences involved in transcription initiation are present both within the transcription unit and in the sequences immediately upstream and that the flanking regions provide sites to bind many different proteins [Soeller et al. 1988]. Consistent with these indications of complex regulation are observations that engrailed expression is dependent on the function of many of the other segmentation genes [Howard and Ingham 1986; Macdonald et al. 1986; DiNardo and O'Farrell 1987; DiNardo et al. 1988; Martinez-Arias et al. 1988]. It has been postulated that control of engrailed expression involves the superimposition of several regulatory pathways, each of which is established by a hierarchical regulatory network of segmentation genes (for review, see Ingham 1988).

An approach in identifying functional elements in such complex promoters is to link the promoter, or portions of it, to a reporter gene. Gene fusions with the structural gene of Escherichia coli β-galactosidase have been used extensively for such studies in Drosophila. Here, we describe similar studies with the engrailed promoter, in which transgenic flies that harbor gene fusions consisting of the structural gene for E. coli β-galactosidase and portions of the promoter were generated. Although the great size of the engrailed promoter virtually prohibits the synthesis of chimeric genes with the entire promoter, we found that the most proximal 7.5 kb of the 5'-flanking sequence is sufficient to generate lacZ expression in most of the posterior developmental compartments in the embryo. Thus, some of the control elements responsible for position-specific expression are located within this region. Surprisingly, many of the transgenic strains were associated with engrailed mutations, lesions that result from the integration of the fusion constructs into and in the immediate vicinity of the engrailed gene. Most of these strains express β-galactosidase.
Results

To identify and characterize the cis-acting elements that regulate engrailed expression, flies were transformed with gene fusions consisting of fragments of engrailed upstream sequences joined with the E. coli lacZ gene. Four promoter fragments that include sequences coding for the initial 5 amino acids of engrailed protein, as well as approximately 1.1, 3.4, 5.7, or 7.5 kb of the sequence immediately upstream of the translation start, were examined (Fig. 1; Table 1). Their introduction into flies was carried out with three different P-element vectors, and lacZ expression was monitored either with antibody directed against β-galactosidase or by enzymatic assay. Many of the transformants expressed β-galactosidase at significant levels, and the patterns of β-galactosidase activity varied in a strain- and construct-dependent fashion. Because its patterns accurately mimic the normal developmental profile of the engrailed gene, we first describe the patterns expressed in a strain carrying the 5.7-kb construct, ryxho25.

lacZ expression with engrailed-like patterns

Expression of β-galactosidase in ryxho25/+ animals evolved throughout embryonic and larval development in a manner that was robust, patterned, and reproducible and was similar to engrailed expression in normal animals. Indeed, β-galactosidase activity in the ryxho25 strain illustrates the spatial disposition of engrailed expression with a precision and clarity that has not been possible previously. The following is a brief summary of this sequence of patterns.

Early during embryo germ-band formation (~3 hr after egg laying [AEL]), stripes of β-galactosidase protein appeared. They alternated in intensity, with stronger expression in the even-numbered parasegments than in the odd-numbered ones in a manner similar to the expression of engrailed (Fig. 2a–d; DiNardo et al. 1985; Weir and Kornberg 1985; Karr et al. 1989). In germ-band-ex tended embryos, the intensities of the stripes equalized, and a new stripe, lying obliquely, formed in the region of the procephalon. On the basis of its relative position and the fate map of head structures at the extended germ-band stage (Jürgens et al. 1986), we assume that this oblique stripe resides in the antennal segment. After invagination of the stomodeum (~5 hr AEL), a small group of cells dorsal to the cephalic band also accumulated β-galactosidase protein (Fig. 2e,f). As development proceeded, the gnathal lobes were subdivided into two parts by a prominent stripe (Fig. 2g,h; ~10 hr AEL), and during dorsal closure, β-galactosidase-containing cells appeared both in the ventral nervous system (Fig. 2i,j) and in the peripheral nervous system (Fig. 2h). Peripheral nervous system expression was localized to chordotonal organs that extend anteroventrally from the lateral sides of each abdominal segment and in a similar pattern in the thoracic segments, although the identity of these cells was not ascertained. Just prior to completion of dorsal closure, β-galactosidase activity appeared in the developing hindgut (not shown).

Although these patterns are similar to those of engrailed protein, there are differences. First, although sensitive antibody probes for engrailed protein detect antigen during early nuclear cycle 14 (Karr et al. 1989), β-galactosidase in ryxho25 was observed only during gastrulation. In addition, engrailed protein appeared in the ventral and peripheral nervous systems and in the hindgut at earlier stages than β-galactosidase activity did. We do not know whether detection of β-galactosidase was not sufficiently sensitive at the earlier stages or whether the particular 5.7-kb fusion construct did not

Figure 1. P-element plasmids with engrailed-lacZ fusion genes. Plasmids used to transform Drosophila were derived from three different vectors. For each vector, a series of engrailed-lacZ fusion genes was constructed (see Experimental procedures). For pUCHsneo, engrailed promoter fragments extended to either the Xbal or SacI site indicated. For Carnegie 20, engrailed promoter fragments extended to either the Stul, Xbal, XhoI, or SacI sites indicated. For pw8, engrailed promoter fragments extended to either the Stul, Xbal, BglII, or SacI sites. Boxed arrowheads indicate P-element termini; right-angle arrows indicate the site of initiation of the engrailed transcript (Soeller et al. 1988); arrows under neo, ry, and w indicate the respective orientation of transcription of these genes.
Table 1. Characterization of 36 different transformants carrying the lacZ gene fused to the 1.1-, 3.4-, 5.7-, and 7.5-kb engrailed 5'-flanking sequences

<table>
<thead>
<tr>
<th>Strain</th>
<th>Chromosome linkage</th>
<th>Cytological location</th>
<th>Expression in embryonic</th>
<th>Imaginal disc expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>hpd</td>
<td>hindgut</td>
</tr>
<tr>
<td>1.1 kb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rystu4</td>
<td>II</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rystu10</td>
<td>II</td>
<td></td>
<td>56F</td>
<td>-</td>
</tr>
<tr>
<td>rystu11</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rystu23</td>
<td>X</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rystu25</td>
<td>II</td>
<td></td>
<td>42B</td>
<td>-</td>
</tr>
<tr>
<td>rystu27</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rystu28</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rystu34</td>
<td>II</td>
<td></td>
<td>39C</td>
<td>-</td>
</tr>
<tr>
<td>rystu37</td>
<td>II</td>
<td></td>
<td>58C-D</td>
<td>-</td>
</tr>
<tr>
<td>rystu45</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wstul 9</td>
<td>X</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wstul 18</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wstul 20</td>
<td>X</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wstul 32</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wstul 36</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wstul 52</td>
<td>II</td>
<td></td>
<td>28A</td>
<td>-</td>
</tr>
</tbody>
</table>

3.4 kb

rxyba21	III			-		-	
rxyba44	III			-		-	
rxyba74	II		55B	-		-	
rxyba82	X		-	-		-	
wxba9	II		47F	+		+	a,b
wxba14	II		34A	-		-	
wxba21	II		48A	+		+	
wxba27	II		26A	-		-	
wxba37	II		24A	+		-	

5.7 kb

rxyho23	II		48A	+ c		+	
rxyho25	II		48A	+		+	+
rxyho30	II		34E	+ d		+	
rxyho38	II		49D	-		-	

7.5 kb

rysac9	II		47F	+		+	+
rysac37	III		+ e	-		+	+
neosac27	II		48A, 50C	+		+	
neosac71	II		47F	+		+	+
wsac16	II		42B	+		+	+
wsac35	X		+	-		+	+
wsac44	III		-	-		-	

Cytological locations were determined for all insertions into the second chromosomes, and the insertion sites in the 48A region are in boldface type. The embryos were stained with anti-β-galactosidase antibody, and other tissues were stained for β-galactosidase activity. Imaginal discs examined included wing, haltere, and leg.

*Expression is weak.

a,b Additional anterior compartment expression in antennal and leg imaginal discs.

c Staining pattern in embryos was normal, but in third-instar larvae, the most anterior row of cells in each adjacent posterior segment also stained, increasing the width of the stripes.

d The pattern of alternating stripes persists in germ-band-shortened embryos.

e Both the anterior and posterior compartments of the wing and haltere discs stain; expression in the leg discs is posterior-compartment specific.

f Expression in the leg and antennal discs is not compartment specific.

support efficient expression earlier. We suspect that the latter explanation may pertain, as the fusion construct does not have a polyadenylation addition termination sequence. Second, β-galactosidase persisted in the epidermis of older embryos longer than *engrailed* protein did. This probably reflects the greater stability of the β-galactosidase protein, because *engrailed* protein in embryos has a half-life of <15 min (Weir et al. 1988), and β-galactosidase is rather long-lived in *Drosophila* (Hiromi and Gehring 1987).
Figure 2. *engrailed* and *engrailed-lacZ* expression in embryos. Patterns of expression revealed by staining of wild-type embryos with anti-*engrailed* antiserum (a, c, e, g, and i) and *ryxho25* embryos with anti-β-galactosidase antiserum (b, d, f, h, and j) are similar. (a and b) Embryos (3 hr) with striped expression of both *engrailed* and β-galactosidase. In b, note the alternating intensity of the stripes (arrows); the intense staining in the procephalon (PC, arrowhead) is vector dependent. (c–f) Embryos 4–6 hr with evenly stained stripes and additional groups of stained cells arranged as an oblique stripe (arrow) and dorsal group (arrow) in the cephalic region. (g and h) Embryos (10 hr) with germ bands almost fully retracted. The segmental furrows are clearly visible, and stripes are confined to the posterior portion of each segment. A set of peripheral nervous cells (lch5; Campos-Ortega and Hartenstein 1985) in the abdomen protrude anterodorsally from the midlateral site and stain in each thoracic and abdominal hemisegment. (GL) Gnathal lobes. (a–h) Anterior left and dorsal up. (i and j) Ventral view of an embryo slightly older than 10 hr. The ventral nervous system (VNS) is clearly stained segmentally along the ventral midline.

Previous studies of normal larvae and adults with probes for *engrailed* RNA or protein, or of genetically mosaic animals did not indicate whether cells of the larval epidermis express the *engrailed* gene or require its function. These studies also did not resolve whether *engrailed* is expressed in the adult sternites or in the ter-
gates of abdominal segments 2–8. Therefore, the presence of posterior developmental compartments in these tissues was not known. In ryxho25 animals we find β-galactosidase expression in all of these tissues, suggesting that their posterior compartments are present and that posterior compartment cells express *engrailed*. In the epidermis of first-instar larvae, two principal aspects of β-galactosidase activity were prominent: stripes in each of the segments and an oblique streak in each hemisegment (Fig. 3a,b). The anterior border of the stripes in segments T2 and T3 extended to the Keilin’s organs, but apparently not to the dorsal hairs or lateral black dots (Fig. 3a). This is consistent with previous observations interpreting the homeotic transformations induced by *Ultrabithorax* mutations (Struhl 1984). The oblique streaks (Fig. 3b) stain chordotonal projections of the peripheral nervous system. In the abdominal segments, there were no features of the abdominal epidermis marking the anterior borders of the stripes ventrally, but dorsally, the stripes included the faint hairs in segments T2–A2 and the intermediate dark hairs of segments A3–A7 (Fig. 3A). Because of endogenous β-galactosidase activity in the most posterior regions of normal larvae, expression due specifically to the ryxho25 strain was not determined in these regions. The epidermal stripes were two to five cells wide, and, in abdominal segments 2–8, included the most anterior row of denticle setae on the ventral surface. This observation suggests that the larval segment borders, which coincide with the posterior border of each stripe, are situated ventrally between the first two most prominent rows of setae in each segment. This conclusion is consistent with the designation of Szabad et al. (1979), who mapped mosaic boundaries in sexual mosaics.

In the epidermis of third-instar larvae, β-galactosidase was present in three principal areas: in a bundle of fibers (marking the chordotonal neurons), which lie obliquely to the segmental borders in the anterior portion of the abdominal segments and parallel to them in thoracic segments two and three (not shown), in some of the cells of the histoblast nests (not shown), and in segmentally reiterated stripes (Fig. 3c). The histoblasts are organized into four pairs of nests in each segment and will generate the adult abdominal cuticle after metamorphosis (Roseland and Schneiderman 1979). Counts of preparations from larvae containing a heat shock promoter–lacZ fusion gene indicated that the ventral, anterior–dorsal, posterior–dorsal, and spiralite nests had 13–18, 12–19, 6–11, and 3–5 cells, respectively, and that of these cells, 2–5 ventral, 0 anterior–dorsal, 6–11 posterior–dorsal, and 0 spiralite nest cells expressed β-galactosidase in ryxho25 animals (not shown). Thus, the progenitor cells of the adult tergite [dorsal abdominal cuticle] are subdivided into physically separate groups of cells, one consisting of anterior compartment cells that do not express *engrailed*, and the other of posterior compartment cells that do. This observation is consistent with previous clonal analysis of the A1 tergite, which suggested that the tergites are subdivided by anterior and posterior compartments (Kornberg 1981b). It is noteworthy that although the posterior compartment stripes of gastrulating embryos are bands with smooth borders, the segmentally reiterated stripes that encircle the larval cuticle have more complex shapes. We presume that these shapes reflect cell movements that contribute to the patterns of the larval cuticle. Like the stripes of the first instar larva, the stripes of the third instar larva include the most anterior rows of the ventral setal belts.

Internal organs of ryxho25 third-instar larvae also contained β-galactosidase (Fig. 4). Such tissues included the hindgut, ventral nervous system, brain, and posterior compartments of all of the imaginal discs. β-Galactosidase activity in its dorsal half divided most of the larval hindgut longitudinally into two approximately equal parts (Fig. 4d), suggesting that this organ, like all other organs of ectodermal origin, is compartmentalized and expresses *engrailed* in its posterior compartment. This observation was confirmed by staining the hindgut with anti-*engrailed* antibody (F. Maschat and T. Kornberg, unpubl.). The borders delimiting the region of β-galactosidase activity are sharply drawn, separating both the hindgut from the midgut and the anterior from posterior compartment of the hindgut (Fig. 4d). Several aspects of the imaginal disc staining were noteworthy. In the wing, leg, and haltere discs, β-galactosidase expression was consistent with known patterns of *engrailed* expression (Fig. 4a; Kornberg et al. 1985; Brower 1986). In contrast and contrary to predictions from clonal analysis studies (Morata and Lawrence 1979), the eye–antennal disc stained strongly in two discrete regions (Fig. 4b). As expected, one was in the part of the presumptive antenna that includes portions of the three antennal segments and the arista. The other, in the presumptive ocellus, was unexpected and may represent a heretofore unmapped posterior compartment. Weak staining was also detected in the regions of the presumptive eye through which the morphogenetic furrow had passed. In the dorsal prothoracic disc (which forms the humerus, mesothoracic spiracle, and pronotum, and for which a fate map has not been established), staining covered the half of the disc that is juxtaposed in the larva to the epidermis and spiracle (Fig. 4c). Because previous clonal analysis studies had indicated only that the entire humerus required *engrailed* function (Lawrence and Struhl 1979), the bipartite pattern of β-galactosidase expression in this disc is our first indication of the compartmental subdivision of the dorsal prothorax. The cuticle produced by these anterior and posterior compartment cells of the humeral disc are described below (Fig. 5). In the labial and genital discs, β-galactosidase expression was confined to a discrete, contiguously staining region in each case. Approximately one-half of the labial disc was β-galactosidase-positive, consistent with previous clonal analysis studies (Struhl 1981). The compartmental subdivision of the genital discs is not clear, although the β-galactosidase expression patterns (Fig. 4e,f) are generally consistent with previous clonal analysis studies (Lawrence and Struhl 1982; F. Epper and T. Kornberg, unpubl.). In addition to the prominent staining of the epidermal cells, weak staining was detected in discrete
regions of the peripodial membranes of the labial, wing, leg, and haltere discs [Fig. 4a].

β-Galactosidase activity in adults was in patterns that were, with few exceptions, consistent with the locations of posterior compartments that had been mapped previously by cell lineage analysis [Fig. 5]. For instance, staining of the wing blade delineated a straight border slightly anterior to the fourth vein, where marked clones also define a boundary for growth [Fig. 5b; Garcia-Bellido et al. 1973, 1976]. Similarly, posterior compartment identity of the proboscis [Struhl 1981], the humerus [Lawrence and Struhl 1982], the postscutellum, postscutum, postpleura, and pteropleura [Garcia-Bellido et al. 1973, 1976], the posterior portions of the legs [Steiner 1976; Lawrence et al. 1979], and the portion of the haltere sclerite extending through the inner surface of the pedicel to the capitellum [Garcia-Bellido et al. 1973,1976] was confirmed by β-galactosidase staining [Fig. 5a,c]. Several regions not detected by the previous studies also stained: The most anterior regions of the thorax derived from the dorsal prothoracic disc had discrete areas of β-galactosidase activity that encircled the anterior thorax completely [Fig. 5d]. Staining was also present in the arista, the region surrounded by the ocelli, at the tips of the maxillary palps [Fig. 5c], in an internal clypeolabral derivative that overlies the posterior plate of the cibarium anteriorly, in the posterior region of the head that covers the occipital foramen, and in a portion of the rostral membrane [not shown]. These regions presumably reflect previously undetected parts of posterior compartments.

The staining patterns of the larval and adult brains share a similar feature [not shown]. Each brain hemisphere had at least four groups of staining cells, although staining of the axonal tracts were noted in pupae. In the pupal and adult brains, the posterior portion of the subesophageal ganglion that connects to the thoracic ganglionic mass through the occipital foramen stained.

Staining in the adult abdomen indicates that the genitalia and abdominal segments are compartmentalized. In the male genitalia [not shown], the external genitalia [including the penis, penis mantle, and clasper and a thin band of the genital arch along the edge of the pons and joining with the clasper], the analia [including the dorsal portions of the anus and anal plate], and sperm pump expressed β-galactosidase and presumably identify posterior compartment cells. This conclusion is consistent with previous clonal analyses [Lawrence and Struhl 1982; F. Epper and T. Kornberg, unpubl.]. In the female, expression was observed in the proximal region of the dorsal anal plate, uterus, vagina, and parovaria [not shown]. In the abdominal segments, both the tergites and sternites are subdivided by bands of staining [Fig. 5c,d]. Dorsally, the staining cells in each segment include the region of the cuticle posterior to the macrochaete that has hairs but not chaete and the intersegmental membrane [Fig. 5e]. This suggests that the acrotergite is the most anterior part of each segment. The bands of staining cells do not include the pleural spiracles or the chaete of the sternites [Fig. 5e,f].

Recombination in the engrailed gene

The engrailed promoter is large, and we would expect that most of it is required to generate the normal patterns of engrailed expression. It was therefore surprising
that the β-galactosidase patterns of ryxho25, which were generated by a construct that contains only 5.7 kb of the promoter, approximated the engrailed program so closely. Whereas most of the transformed strains did not express β-galactosidase specifically in the posterior compartments, ryxho25 was only one of several that did. To investigate this inconsistency, the cytological location of the integrated plasmids was determined in all of the transformed strains whose P elements segregated with the second chromosome, the location of the engrailed gene. Remarkably, most strains with posterior compartment expression of β-galactosidase had the engrailed region of the chromosome at polytene region 47F–48A as the common site of integration (Table 1).

In situ hybridization to polytene chromosomes and Southern analysis of chromosomal DNA indicated that two of the transformed strains with the 5.7-kb fragment (ryxho23 and ryxho25) and one with the 7.5-kb fragment (neosac27) had integrated the fusion constructs in the engrailed gene. In addition, these strains failed to complement engrailed mutants (Fig. 6). For instance, heterozygotes of ryxho23 with enSX31, a deletion of the engrailed region, enL47, an engrailed point mutation, or enV had wing vein abnormalities. The phenotype of ryxho25 was more extreme: It failed to survive with enSX31 and had wing vein abnormalities similar to en-point-lethal/enV flies. ryxho25 homozygotes survived occasionally and had wings with similar defects. rysac9 and neosac71, when heterozygous with engrailed mutations, have phenotypes similar to ryxho23. The engrailed phenotype of neosac27 is similar to ryxho25, although neosac27 carries two insertions on the second chromosome and is female sterile. Clearly, engrailed function encoded on the chromosomes with the inserted chimeric genes was affected by the presence of the integrated element. Patterns of β-galactosidase expression in the three strains were indistinguishable, with the exception that the hindgut of neosac27 larvae expressed β-galactosidase in all of the hindgut cells.

To investigate the mechanism by which these strains had been transformed, two of the integrated elements were isolated in recombinant form. Sequence analysis of the junction regions of the inserts of ryxho25 and neosac27 revealed them to be 257 nucleotides upstream and 14 nucleotides downstream of the most distal engrailed initiation start site, respectively (Fig. 7a). Eight base pairs of genomic sequence were duplicated at each end of the inserts. Southern analyses indicated that the integrated constructs had lost the bacterial sequences that had been located between the P-element ends, suggesting that P-element functions had catalyzed their insertion into the genome. Therefore, the structure of the inserts suggests that integration was mediated by P-element functions and did not involve homologous recombination. Consistent with this result, no transformants were recovered after the 7.5-kb fusion construct was injected into >1000 embryos that had no source of P transposase. Further characterization indicated that the chimeric genes in ryxho25 and neosac27 are in opposite directions, with the engrailed–lacZ gene of neosac27 in the same orientation as the resident engrailed gene.

In four additional strains, the recombinant P elements integrated into the region of engrailed, although not into the gene itself (Fig. 7a,b). wxba21 had an insert in injected, a gene that is closely related to engrailed in se-

Figure 4. β-Galactosidase activity in imaginal discs and the hindgut of ryxho25 larvae is largely confined to posterior compartments. (a) Most β-galactosidase activity in this wing imaginal disc is in the posterior compartment. The weakly stained area (indicated at its border by the arrowhead) may be associated with the periopodial membrane. (b) Most β-galactosidase activity in this eye–antennal imaginal disc is in the posterior compartment of the antenna (Ant) and arista (Ar). In addition, there is a region with intense staining in the area of the presumptive ocellus (Oc) and a region with light staining in the portion of the eye disc through which the morphogenetic furrow has passed (indicated by arrowhead). (c, e, and f) Staining in the humeral (c), male genital (e), and female genital (f) imaginal discs indicates the bicompartmental organization of these organs. (Ep) Epidermis. (Sp) spiracle. (d) Staining of one longitudinal half indicates the bicompartmental organization of the hindgut. The anterior limit of the staining precisely defines the boundary of the midgut (MG) and hindgut (HG). (A) Anterior compartment; (P) posterior compartment.
Figure 5. β-Galactosidase activity in the adult cuticle of ryyho25 flies defines the posterior compartments. (a and b) Adult female and wing blade stained for β-galactosidase activity. (c) Drawing of stained adult female, indicating the patterns of β-galactosidase activity. In the head, these patterns largely agree with earlier mosaic studies with engrailed mutants, with the exception that β-galactosidase activity was observed in the arista [Ar], the ocellus [Oc], the maxillary palps [Mp], and the posterior head capsule (data not shown). Activity in the humerus [Hu] and cervical region is shown in d, and the location of the stripes of activity in the tergites and sternites is shown in e and f. (A) Anterior compartment; (P) posterior compartment; (Sp) spiracle; (IM) intersegmental membrane; (AT) acrotergite; (MA) macrochaete; (pA7) posterior compartment of A7; (pA8) posterior compartment of A8.

Sequence and pattern of expression and is juxtaposed and proximal to engrailed (Coleman et al. 1987). Sequence analysis indicated that the ends of the wxba21 insert were joined to nucleotides −6 and +2 of the invected transcription unit and that the 8 adjacent base pairs of the genome were duplicated at each end. Transcriptional orientation of the chimeric gene is the same as the resident invected gene. In the three other strains—wxba9,
The wing phenotype of ryxho25/en'. Comparison of photographs of wild-type [a] and mutant [b] wings reveals abnormalities in the fourth and fifth wing veins. These abnormalities are confined in the posterior compartment. Rare ryxho25 homozygotes have a similar wing phenotype with occasional loss of bristles on scutellum and one haltere.

rysac9, and neosac71—the P elements were integrated in region 47E–F.

To summarize, among 20 strains transformed with chimeric genes containing 3.4, 5.7, or 7.5 kb of engrailed promoter sequence, 7 (henceforth referred to as 48A strains) integrated into the region of the engrailed gene. In contrast, among 16 strains transformed with chimeric genes containing 1.1 kb of the engrailed promoter, none integrated into the 48A region.

Patterns of β-galactosidase expression depend on both position and sequence

Patterns of β-galactosidase activity in the transformed strains were determined. In 16 strains with 1-kb constructs, no activity was detected that was prominent or specific to engrailed promoter sequences [Table 1]. Instead, a variety of patterns characterized the strains. A feature common to some of these strains was expression in the posterior–dorsolateral portion of each segment in germ-band-extended embryos. In many of these patterns, a cluster of stained cells was also visible at the ventralmost extension of each segmental stripe; however, we have not established that the segmentally repeated patterns of these strains is dependent on the 1 kb of engrailed sequence.

Among nine strains with 3.4 kb of engrailed promoter, only the two 48A strains had significant activity. Four transformed strains were recovered that carried constructs with 5.7 kb of the engrailed promoter, and two of these had inserts outside the engrailed region. One [ryxho38 at 49D] had no significant activity; the other [ryxho30 at 34E] had striped expression of β-galactosidase in the epidermis and ventral nervous system of embryos. These patterns of β-galactosidase activity were similar to those of the 48A strains, except that the ryxho30 patterns alternated in intensity even after germ-band shortening. The 48A strains had patterns that alternated in intensity only during germ-band elongation and subsequently were of equal intensity. Neither ryxho30 or ryxho38 larvae had β-galactosidase activity that was prominent or specific to the posterior compartments of their imaginal discs.

Among the strains with 7.5-kb constructs, three of the...
four non-48A strains had significant β-galactosidase activity. Strong expression in the embryos of rysac37, wsac16, and wsac35 closely approximated the embryonic patterns of ryxho25 in the epidermis and nervous system. Relative to ryxho25, however, expression progressed more slowly: The striped patterns of germ-band-extended embryos alternated in intensity and equalized only later. The 7.5-kb strains had no or little expression in the region of the procephalon and hindgut, respectively, and staining of the chordotonal organs and the ventral nervous system was weaker in the three strains. Imaginal disc expression in these strains was weak and was also strain dependent. Whereas expression in all wsac16 discs was posterior-compartment-specific, only the leg discs of rysac37 flies and wing and haltere discs of wsac35 flies had engrafted-like patterns. We conclude that within 7.5 kb of the proximal portion of the engrafted promoter, there is sufficient information to specify expression in most posterior compartments of the embryonic and imaginal tissues. The weak imaginal expression in these strains suggests that the 7.5 kb of upstream sequence lacks enhancers involved in promoting high-level expression in these tissues.

To investigate whether the mechanism by which the 7.5-kb segment directs the striped pattern in embryos is similar to that of the normal engrafted promoter, we examined the pattern of β-galactosidase activity of wsac35 embryos that were mutant for genes known to affect en-

![Figure 8](genesdev.cshlp.org)
engrailed expression [Howard and Ingham 1986; MacDonald et al. 1986; DiNardo and O'Farrell 1987; DiNardo et al. 1988; Martínez-Arias et al. 1988]. For example, engrailed expression disappears in even- and odd-numbered parasegments of fushi tarazu [ftz] and paired [prd] mutants, respectively, and appears ectopically in hairy [h] and odd-skipped (odd) mutants. Related effects have been observed in mutants of even-skipped [eve], naked [nkd], patched [ptc], and wingless [wg]. We found that the striped patterns of β-galactosidase activity in the embryonic epidermis of wsac35 were altered in these mutants and that the observed effects were consistent with the responses of engrailed expression to these mutant backgrounds for examples of h, odd, and nkd, [see Fig. 8]. Thus, regulation provided by the 7.5-kb fragment involves the direct or indirect action of the factors that normally control engrailed expression.

In addition, patterns of β-galactosidase in engrailed mutant embryos suggest that the “zebra-stripe” element is regulated directly or indirectly by engrailed itself. When patterns of β-galactosidase in wsac35/+ , wsac35/+;enL47/enL47, and wsac35/+;enSPX31/enSPX31 embryos were compared, stripes of β-galactosidase appeared in the expected segmentally-reiterated patterns characteristic of early engrailed expression (not shown). We conclude that engrailed function is not required to establish its initial patterns of expression. However, in the enL47/ enL47 mutant embryos [but not in the control embryos], stripes of β-galactosidase in the regions dorsal to the tracheal pits in the thoracic and abdominal segments disappeared during germ band extension [about 5.5 hr AEL; Fig. 8e]. In the enSPX31/enSPX31 embryos, expression was more variable: in some, expression was similar to enL47/ enL47, whereas in others, the dorsolateral regions of the odd numbered stripes were absent [Fig. 8f]. Because engrailed expression does not normally diminish at these stages, and because engrailed expression is not maintained in germ-band extended embryos in many engrailed mutant backgrounds [Weir and Kornberg 1985; E. Gustavson and T. Kornberg, unpubl.], we infer that engrailed may have an autoregulatory role that sustains expression in the embryonic epidermis and that this role may differ in the even and odd numbered stripes.

Finally, we note that the fusion genes that integrated into the engrailed gene appear to be regulated in a manner that is almost indistinguishable from the normal gene. We conclude that the elements of the large engrailed promoter, which normally operate over long distances, can function even when the relative orientation or absolute distances from their target has changed.

Discussion

Region-specific integration of engrailed–P elements

We used recombinant P elements to insert engrailed promoter–lacZ fusion genes into the fly genome. Numerous previous studies indicated that P elements transpose efficiently and that transposition to particular loci varies from frequencies of <10^-6 to 10^-2 [Engels 1983; Kidwell 1986]. Among 400 transformants whose cytological locations have been mapped and reported, only 3 integrated in the 47EF–48AB region [Merriam et al. 1986], and none of the genes in the ~30–40 polytene bands in this region are frequent sites for P-element recombination. Yet, similar P-element constructs containing engrailed sequences frequently did insert in this region—7 of 36 lines in this study.

Integration in the engrailed region depended on the amount and/or identity of sequences in the transformation vector. For instance, none of 16 different lines with 1.1 kb of promoter sequence, but 7 of 20 with more flanking sequence, inserted into the engrailed region. Furthermore, subsequent studies with constructs containing other arrangements of the engrailed promoter confirmed a high frequency of targeted insertion [7 of 10 with constructs containing sequences 3–5 kb upstream of the engrailed transcription start site, 8 of 9 with constructs containing the structural gene, 7.5 kb of upstream and 3 kb of downstream sequence; C.-N. Chen and T. Kornberg, unpubl.] We are intrigued by these ex-

Table 2. Transformation frequencies with engrailed–lacZ fusion genes

<table>
<thead>
<tr>
<th>Transposon</th>
<th>Embryos injected</th>
<th>Embryos hatched</th>
<th>Fertile adults</th>
<th>Transformed adults</th>
<th>Transformants with inserts in engrailed region</th>
</tr>
</thead>
<tbody>
<tr>
<td>neoxba</td>
<td>365</td>
<td>120</td>
<td>?</td>
<td>0 [0.0]</td>
<td>—</td>
</tr>
<tr>
<td>neosac</td>
<td>568</td>
<td>237</td>
<td>?</td>
<td>2 [0.35, 0.84]</td>
<td>2</td>
</tr>
<tr>
<td>rystu</td>
<td>550</td>
<td>251</td>
<td>?</td>
<td>18 [3.3, 7.2]</td>
<td>0</td>
</tr>
<tr>
<td>rxyba</td>
<td>370</td>
<td>218</td>
<td>?</td>
<td>105 [1.1, 1.8]</td>
<td>0</td>
</tr>
<tr>
<td>rxyho</td>
<td>513</td>
<td>263</td>
<td>?</td>
<td>4 [0.78, 1.5]</td>
<td>2</td>
</tr>
<tr>
<td>rysac</td>
<td>260</td>
<td>161</td>
<td>?</td>
<td>72 [0.77, 1.2]</td>
<td>1</td>
</tr>
<tr>
<td>wsta</td>
<td>324</td>
<td>274</td>
<td>?</td>
<td>11 [3.4, 4.0]</td>
<td>0</td>
</tr>
<tr>
<td>wxbp</td>
<td>474</td>
<td>426</td>
<td>?</td>
<td>6 [1.3, 1.4]</td>
<td>2</td>
</tr>
<tr>
<td>wbg1</td>
<td>488</td>
<td>455</td>
<td>?</td>
<td>1 [0.20, 0.22]</td>
<td>ND</td>
</tr>
<tr>
<td>wsac</td>
<td>472</td>
<td>418</td>
<td>?</td>
<td>3 [0.64, 0.72]</td>
<td>0</td>
</tr>
<tr>
<td>pw8</td>
<td>312</td>
<td>171</td>
<td>62</td>
<td>25 [8.0, 14.6]</td>
<td>ND</td>
</tr>
</tbody>
</table>

aThe numbers in parentheses are percent of flies transformed relative to the numbers of embryos injected and hatched, respectively.

bThe staining pattern of this transformant was not related to that of engrailed and its integration site was not determined [ND].
samples of targeted mutagenesis and consider possible mechanisms.

Several observations indicate that the recombinants we obtained in the *engrailed* region were not mediated by a homologous mechanism. For instance, among >1000 embryos injected with the 7.5-kb fusion plasmid, but not coinjected with a helper plasmid to supply P transposase, no transformants were obtained. In addition, none of the 36 transformants we characterized retained those plasmid sequences that are bracketed by the P-element ends and that are normally deleted during P-element-mediated integration. Finally, the sequence of the junctions of three transformants included genomic 8-bp repeats, another feature characteristic of P-element-mediated integration. Because the *engrailed* region is not normally a frequent target for P-element integration and the frequency of transformation observed was so low as to indicate the elimination of a background of random integrations (Table 2), we conclude that the region-specific insertion observed was dependent on both P-dependent recombination and the *engrailed* sequences in our transformation constructs. We are aware of no precedent for such directed, but nonhomologous, recombination. We suggest that either sequence homologies provide sufficient affinity to attract the recombinant constructs to the 48A region or that the *engrailed* promoter has an abundance of binding sites for proteins that can bring together sequences that they recognize in the *engrailed* gene. Strongly influenced by their proximity to the 48A region, a high percentage of the elements apparently integrate in this portion of the chromosome via P-dependent functions. We designate the term "homing" to describe the tendency of these elements to locate near the site of their greatest homology.

An interesting feature of the strains with plasmids integrated in the *engrailed* region is their *engrailed*-like compartment-specific expression. For those strains with inserts in the *engrailed* or *inverted* genes, it seems likely that expression of the inserts is regulated by adjacent promoter sequences that normally control the expression of *engrailed* and *inverted*, respectively. Sensitivity to promoter context has been observed previously and has been used as a general method for screening the *Drosophila* genome for particular patterns of expression (O'Kane and Gehring 1987). For those plasmids integrated in the general region but outside of the immediate vicinity of *engrailed* and *inverted*, compartment-specific expression patterns are more surprising (see wxbp9 in Table 1). We can offer no satisfying explanation except to postulate that either the influence of the *engrailed* and *inverted* promoters can extend over these great physical distances or that numerous other genes in the *engrailed* region are also expressed specifically in the posterior compartments. In this regard, the suggestion (see above) that enhancer-binding proteins may bring together sequences that they recognize in the *engrailed* gene may be extended to include other loci that are regulated by the same proteins. Following this reasoning, integration of the transposons in genes related to *engrailed* may be a consequence of homing.

The *engrailed* promoter

Mutations that inactivate the *engrailed* gene can be located as much as 25 kb upstream or 15 kb downstream of the *engrailed* transcription unit. Because there are many sites that bind regulatory proteins in this region (Soeller et al. 1988; Han et al. 1989) and because many other segmentation genes have been implicated as regulators of *engrailed* expression (Ingham 1988), it is apparent that the *engrailed* promoter is both large and complex. Our preliminary analysis of the effects of *engrailed* mutations has revealed only a general outline of the organization of functions in the promoter (E. Gustavson, M.P. Weir, and T. Kornberg, unpubl.). Breakpoint mutations within the 1 kb adjacent to the 5' end of the transcription unit reduce transcription to undetectable levels. Expression is detectable in mutants with more distal breakpoints: It is normal in the clypeolabrum and hindgut and is present but greatly reduced in all ectodermal stripes and in the nervous system. Two alleles, C2 and SPX24, located ~13 and 18 kb upstream of the transcription start site, respectively, have more expression in the even-numbered parasegments than in the odd-numbered ones. We conclude that sequence elements essential for transcription are present adjacent to the transcription start site and that control elements necessary for expression in the clypeolabrum and hindgut are within the transcription unit, to its 3' side, or close to its 5' end. Efficient striped expression at wild-type levels must require sequences at least 15 kb upstream.

Studies published previously indicated that sequences within the proximal 10.7 kb of the *engrailed* promoter can direct striped embryonic expression of *lacZ* fusion constructs (DiNardo 1988). Our observations with similar constructs indicate that control elements are located within 7.5 kb of the transcription start site that are sufficient to promote expression in the posterior compartments of the embryonic epidermis and ventral nervous system but not in the clypeolabrum, hindgut, a portion of the procephalon, or larval imaginal discs. We therefore assume that regulatory functions located within the proximal 7.5 kb include both a "zebra-stripe" element for expression in the posterior compartments and/or a region with embryo-specific enhancer activity. Further analysis of this "zebra-stripe" enhancer (C.N. Chen and T. Kornberg, unpubl.) indicates that stripes in the cephalic, thoracic, and abdominal segments are not individually regulated. This conclusion is consistent with the phenotype of the mutants that break the chromosome in this region. In this respect, the organization of the *engrailed* promoter may be unlike that of the *h* and *eve* gene promoters, in which the different stripes appear to be separately controlled (Howard 1989; Goto et al. 1989; Harding et al. 1989).

Promoter function controlled by the proximal 7.5 kb differs from the normal program of *engrailed* gene activation with respect to low expression in imaginal discs and several embryonic tissues, low expression in the early gastrula, and delay until germ-band contraction for
expression of the stripes in the even- and odd-numbered parasegments to reach equal intensity. It is possible that all of these differences can be attributed to the absence of appropriate enhancer elements in these fusion constructs. For instance, it is possible that a separate enhancer sequence is essential for imaginal expression. Indeed, the mutant en^1 has an insertion in the en^grailed promoter 15 kb upstream of the transcription start site, which specifically affects adult structures, and this region of the promoter can, in promoter fusion constructs, efficiently direct posterior compartment-specific expression in imaginal discs (C.-N. Chen and T. Kornberg, unpubl.). Similarly, it is clear from the patterns of en^grailed expression in many breakpoint mutants that expression of en^grailed in the clypeolabrum and hindgut is unaffected by lesions that abolish expression in the ectoderm and nervous system.

en^grailed is expressed during most of the fly developmental cycle in various patterns: apparently uniformly in the pre-blastoderm syncytium; in a striped array in the early gastrula, subsequently in the embryonic central and peripheral nervous system, hindgut, and clypeolabrum; and in a compartment-specific manner in the embryonic ectoderm. In larvae, it is expressed in the imaginal discs and histoblasts, central and peripheral nervous system, hindgut, and clypeolabrum. Our genetic and molecular genetic studies indicate that the en^grailed promoter regulates expression with multiple spatially and temporally distinct programs and that the complexity of the en^grailed promoter apparently is a reflection of these many ways in which the en^grailed gene is used. Conceptualizing the program of en^grailed expression simply in terms of initiation versus maintenance may be misleading, given the multitude of developmental programs that characterize its regulation.

Studies of en^grailed expression in chordates, annelids, and other arthropods have led to the suggestion that en^grailed and other Drosophila segmentation genes have been coopted to their role in segmentation and that their original role was in neurogenesis (Patel et al. 1989). This view, that evolution of segmentation in arthropods has been driven principally by changes in the regulation of preexisting genes rather than by gene duplication, is certainly consistent with the complexity of the en^grailed promoter.

Experimental procedures

P-element-mediated transformation

Germ line transformation was carried out essentially as described by Rubin and Spradling (1982). Embryos were injected with 300–600 µg/ml of the different constructs and, to produce transposase, 150 µg/ml of pw25.7 wc (Karess and Rubin 1984).

Drosophila strains

For P-element-mediated transformation, ry^506 embryos were injected with pUCHsneo (Steller and Pirrotta 1985) or Carnegie 20 (Rubin and Spradling 1983) derivatives, and Df(1)w67c23 y embryos were injected with derivatives of pw8 (Klemenz et al. 1987). Inserts in transgenic flies were mapped genetically by crossing to appropriately marked strains. For fine-mapping strains with second chromosome insertions, in situ hybridization was carried out with probes for the lacZ gene. Polytenic chromosome squashes, biotinylation of probes, and hybridization were performed according to E. Hafen (pers. comm.). For genetic analysis of strains with second chromosome inserts, heterozygotes were generated with the en^grailed alleles en^1 (viable), en^LA7, and en^S391 (both lethal; Kornberg 1981a), and lethality and the wing phenotype were scored.

Plasmid construction

The E. coli lacZ gene was cloned into pUCHsneo as a BamHI fragment from pMC1871. The orientation of the insert placed the carboxyl terminus of lacZ adjacent to the SalI site in the polylinker of the vector. The carboxy-terminal BamHI site was then removed, and a new polylinker sequence, GATC-CATGGTCTAGACTCCGCGGAAATTT, containing BamHI, Ncol, XbaI, SalI, SacI, and EcoRI restriction sites was introduced between the BamHI and EcoRI sites at the amino-terminal end of the lacZ gene to produce pUCneolac. To generate en^grailed-lacZ fusion genes, a new BamHI site was created in the en^grailed gene by use of oligonucleotide mutagenesis to change the G residue of the seventeenth nucleotide in the en^grailed protein-coding sequence to C. The resulting fusion proteins contained the initial 5 amino acids of the en^grailed protein in addition to all the 8 amino-terminal amino acids of β-galactosidase. Promoter fragments joined to the fusion construct terminated at the Stul, XbaI, XhoI, and SacI sites, which demarcate −0.85, −3.2, −5.5, and −7.3 kb, respectively, from the transcription initiation site of en^grailed. To move the constructs into Carnegie 20 (Rubin and Spradling 1983) and pw8 (Klemenz et al. 1987), the SacII-SalI fragment containing 7.5 kb en^grailed upstream, leader, and amino-terminal protein-coding sequences and the lacZ sequence inserted in pUCneolac was digested with SalI and appropriate restriction enzymes, filled in when necessary, and ligated to appropriately digested vector.

Southern hybridization and sequencing

Preparation of fly DNA and Southern analysis was as described previously (Kuner et al. 1985). To locate the integration sites of the strains with inserts in the 48AB region, probes from phage genomic clones encompassing ~200 kb of the 48AB region were generated by use of random primers and hybridized to fly genomic Southern. Four strains, wxba21, ryxho23, ryxho25, and neoasc27, were found to carry the inserts in this region. The precise insertion sites of wxba21, ryxho25, and neoasc27 were determined by isolation of relevant clones from partial Sau3A libraries made in EMBL 3 and sequencing by use of a 20-mer oligonucleotide (CGACGGGACCACCTTATGTT) from the promoter sequence by use of oligonucleotide mutagenesis to change the G residue of the seventeenth nucleotide in the en^grailed protein-coding sequence to C. The resulting fusion proteins contained the initial 5 amino acids of the en^grailed protein in addition to all the 8 amino-terminal amino acids of β-galactosidase. Promoter fragments joined to the fusion construct terminated at the Stul, XbaI, XhoI, and SacI sites, which demarcate −0.85, −3.2, −5.5, and −7.3 kb, respectively, from the transcription initiation site of en^grailed. To move the constructs into Carnegie 20 (Rubin and Spradling 1983) and pw8 (Klemenz et al. 1987), the SacII-SalI fragment containing 7.5 kb en^grailed upstream, leader, and amino-terminal protein-coding sequences and the lacZ sequence inserted in pUCneolac was digested with SalI and appropriate restriction enzymes, filled in when necessary, and ligated to appropriately digested vector.

Staining of embryos, larvae, and adult flies

Unless indicated otherwise, stained animals were heterozygous for markers derived from a chromosome deletion series, except for the Office (1)w67c23 y strain as described by Michelson and Sedat (1983), with some modifications. Collected embryos were dechorionated in 50% bleach solution for 90 sec and transferred to a tube containing a fixative composed of 0.2 ml of 38% formaldehyde, 1.8 ml of PEM buffer (0.1 M PIPES, 1 mM MgCl2, and 1 mM EGTA, adjusted to pH 6.9 with KOH), and 2 ml of heptane. After shaking vigorously for 30 min, the lower aqueous phase was aspirated, and methanol was added to
remove the vitelline membrane, followed by vigorous hand agita-
tion for 10 sec. All of the solution was then aspirated, and the
embryos were rinsed three times with methanol and three
times with PBTK [50 mM NaH₂PO₄ (pH 7.3), 5 mM KCl, 50 mM
NaCl, 0.2% BSA, and 0.1% Triton X-100]. For staining with
antibody, the embryos were transferred to a solution containing
a 10% normal goat serum and 1: 1000 to 1: 5000 diluted rabbit
anti-β-galactosidase IgG (Vector), diluted to 1: 200, and streptavidin–horseradish peroxidase conjugate (BRL), di-
luted to 1: 200 in PBTK, were used for secondary and tertiary
reactions. Each step was done as described for the primary reac-
tion. The peroxidase reaction was carried out in PBTK with 170
µg/ml diaminobenzidine and 0.06% hydroxyperoxide. Stained
embryos were dehydrated in ethanol, cleared in methyl salicy-
late, and mounted in methyl salicylate—Canada balsam mixture.
Imaginal discs, larval hindgut, and adult integuments
were fixed with 0.2% EM-grade glutaraldehyde in PBS [130 mM
NaCl, 7 mM Na₂HPO₄, and 3 mM NaH₂PO₄] for 2 min on ice,
washed with PBS, and incubated in X-gal solution [0.2% 5-
 bromo-4-chloro-3-indolyl-β-D-galactopyranoside, 0.15 M NaCl,
1.0 mM MgCl₂, 5 mM K₃[Fe(CN)₆], 5 mM K₄[Fe(CN)₆], and
10 mM sodium pyrophosphate (pH 7.0)], according to Simon et al. [1985], with a slight modification] from 5 hr to overnight
at 37°C. For adult integuments, all steps were carried out by in-
jecting each solution before placing the tissue in X-gal solution.
Wings were dissected from freshly eclosed flies, submerged in
50% EM-grade glutaraldehyde, immediately washed with PBS,
and stained in X-gal solution overnight.

Acknowledgments

We are grateful to Stephen Poole, Walter Soeller, Michael Weir,
Elizabeth Gustavson, Tim Karr, and Kevin Coleman for state-
of-the-art technical instructions, stimulating suggestions, and
encouragement. We thank Kevin Coleman for cloning insertion
sequences for some transformants and Rolf Bodmer and Steve
Harding, K., T. Hoey, R. Warrier, and M. Levine. 1989. Autore-
gulatory and gap gene response elements of the
spatial distribution of its transcript. Nature
Garcia-Bellido, A. 1975. Homoeotic and atavic mutations in in-
mental compartmentalization of the wing disk of Droso-
—. 1976. Developmental compartmentalization of the
periodic patterns of even-skipped expression are controlled
by distinct regulatory elements that respond to different
Han, K., M.S. Levine, and J.L. Manley. 1989. Synergistic activa-
tion and repression of transcription by Drosophila home-
Harding, K., T. Hoey, R. Warrier, and M. Levine. 1989. Autore-
gulatory and gap gene response elements of the even-
Hiromi, Y., and W.J. Gehring. 1987. Regulation and function of the
Howard, K. and P. Ingham. 1986. Regulatory interactions be-
tween the segmentation genes fushi tarazu, hairy, and en-
alleles of the Drosophila segmentation gene hairy. Genes
Dev. 2: 1037–1046.
Ingham, P.W. 1988. The molecular genetics of embryonic pat-
Jürgens, G., R. Lehmann, M. Schardin, and C. Nüsslein-Vol-
hard. 1986. Segmental organization of the head in the em-
bro of Drosophila melanogaster. A blastoderm fate map of the
cuticle structure of the larval head. Wilhelm Roux’s Arch.
engrailed protein in early Drosophila embryos. Develop-
ment 105: 605–612.
as a marker in a new P-element vector for gene transfer in
Kornberg, T. 1981a. engrailed : A gene controlling comparta-

References

Brower, D. 1986. engrailed gene expression in Drosophila imagi-
meotic genes caused by the elimination of the Polycomb
gene in Drosophila imaginal epidermis. Development
104: 713–720.
Coleman, K.G., S.J. Poole, M.P. Weir, W.C. Soeller, and T.B.
analysis and expression studies reveal a close kinship to the

DiNardo, S. and P.H. O’Farrell. 1987. Establishment and refine-
ment of segmental pattern in the Drosophila embryo: Spat-
tial control of en grailed expression by pair-rule genes. Genes
Dev. 1: 1212–1225.
DiNardo, S., J. Kunder, J. Theis, and P. O’Farrell. 1985. Develop-
ment of embryonic pattern in D. melanogaster as revealed
by accumulation of the nuclear en grailed protein. Cell
43: 59–69.
DiNardo, S., E. Sher, J. Heemskerk-Jongens, J. Kassiss, and P.
O’Farrell. 1988. Two-tiered regulation of spatially patterned
engrailed gene expression during Drosophila embryo-
Drees, B., Z. Ali, W. Soeller, K. Coleman, S. Poole, and T. Korn-
berg. 1987. The transcription unit of the Drosophila en-
grailed locus: An unusually small portion of a 70,000 bp
Engels, W.R. 1983. The P family of transposable elements in
homebox-containing gene from the en grailed region of
Drosophila and the spatial distribution of its transcript. Na-
ture 313: 284–289.
Garcia-Bellido, A. 1975. Homoeotic and atavic mutations in in-
mental compartmentalization of the wing disk of Droso-
—. 1976. Developmental compartmentalization of the
periodic patterns of even-skipped expression are controlled
by distinct regulatory elements that respond to different
Han, K., M.S. Levine, and J.L. Manley. 1989. Synergistic activa-
tion and repression of transcription by Drosophila home-
Harding, K., T. Hoey, R. Warrier, and M. Levine. 1989. Autore-
gulatory and gap gene response elements of the even-
Hiromi, Y., and W.J. Gehring. 1987. Regulation and function of the
Drosophila segmentation gene fushi tarazu. Cell
Howard, K. and P. Ingham. 1986. Regulatory interactions be-
tween the segmentation genes fushi tarazu, hairy, and en-
alleles of the Drosophila segmentation gene hairy. Genes
Dev. 2: 1037–1046.
Ingham, P.W. 1988. The molecular genetics of embryonic pat-

1092 GENES & DEVELOPMENT
engrailed–lacZ chimeric gene expression

